1887

Abstract

is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from against MDR MRSA. antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid ( / for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular was decreased [reduction of ~2 log c.f.u. (mg Vero cell protein)] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000343
2016-10-18
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1205.html?itemId=/content/journal/jmm/10.1099/jmm.0.000343&mimeType=html&fmt=ahah

References

  1. Acharyya S., Sarkar P., Saha D. R., Patra A., Ramamurthy T., Bag P. K.. 2015; Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol64:901–909 [CrossRef][PubMed]
    [Google Scholar]
  2. Archer G. L.. 1998; Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis26:1179–1181[PubMed][CrossRef]
    [Google Scholar]
  3. Archer N. K., Mazaitis M. J., Costerton J. W., Leid J. G., Powers M. E., Shirtliff M. E.. 2011; Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence2:445–459 [CrossRef][PubMed]
    [Google Scholar]
  4. Bag P. K., Bhowmik P., Hajra T. K., Ramamurthy T., Sarkar P., Majumder M., Chowdhury G., Das S. C.. 2008; Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol74:5635–5644 [CrossRef][PubMed]
    [Google Scholar]
  5. Barcia-Macay M., Seral C., Mingeot-Leclercq M. P., Tulkens P. M., Van Bambeke F.. 2006; Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother50:841–851 [CrossRef][PubMed]
    [Google Scholar]
  6. Biswas K., Chattopadhyay I., Banerjee R. K., Bandyopadhyay U.. 2002; Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci82:1336–1345
    [Google Scholar]
  7. Carryn S., Van Bambeke F. M., Mingeot-Leclercq M. P., Tulkens P. M.. 2002; Comparative intracellular (THP-1 macrophage) and extracellular activities of β-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother46:2095–2103 [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI 2009; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 8th edn, M07-A8. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  10. Davies D.. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2:114–122 [CrossRef][PubMed]
    [Google Scholar]
  11. De La Fuente R., Sonawane N. D., Arumainayagam D., Verkman A. S.. 2006; Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br J Pharmacol149:551–559 [CrossRef][PubMed]
    [Google Scholar]
  12. de Lencastre H., Oliveira D., Tomasz A.. 2007; Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol10:428–435 [CrossRef][PubMed]
    [Google Scholar]
  13. Guirao G. Y., Martínez Toldos M. C., Mora Peris B., Alonso Manzanares M. A., Gutiérrez Zufiaurre M. N., Martínez Andrés J. A., Muñoz Bellido J. L., García-Rodríguez J. A., Segovia Hernández M.. 2001; Molecular diversity of quinolone resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. J Antimicrob Chemother47:157–161 [CrossRef][PubMed]
    [Google Scholar]
  14. Gupta S. C., Prasad S., Reuter S., Kannappan R., Yadav V. R., Ravindran J., Hema P. S., Chaturvedi M. M., Nair M., Aggarwal B. B.. 2010; Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem285:35406–35417 [CrossRef][PubMed]
    [Google Scholar]
  15. Gupta K., Marques C. N., Petrova O. E., Sauer K.. 2013; Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol195:4975–4987 [CrossRef][PubMed]
    [Google Scholar]
  16. Hall-Stoodley L., Costerton J. W., Stoodley P.. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol2:95–108 [CrossRef][PubMed]
    [Google Scholar]
  17. Huang E., Yousef A. E.. 2014; The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol80:2700–2704 [CrossRef][PubMed]
    [Google Scholar]
  18. Hurdle J. G., O'Neill A. J., Chopra I., Lee R. E.. 2011; Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol9:62–75 [CrossRef][PubMed]
    [Google Scholar]
  19. Jacoby G. A.. 2005; Mechanisms of resistance to quinolones. Clin Infect Dis41:S120–S126 [CrossRef][PubMed]
    [Google Scholar]
  20. Kadurugamuwa J. L., Beveridge T. J.. 1998; Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother42:1476–1483[PubMed]
    [Google Scholar]
  21. Khalid S. A., Duddeck H., Gonzalez-Sierra M.. 1989; Isolation and characterization of an antimalarial agent of the neem tree Azadirachta indica. J Nat Prod52:922–926 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar K., Chopra S.. 2013; New drugs for methicillin-resistant Staphylococcus aureus: an update. J Antimicrob Chemother68:1465–1470 [CrossRef][PubMed]
    [Google Scholar]
  23. Lowy F. D.. 1998; Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  24. Luppens S. B., Rombouts F. M., Abee T.. 2002; The effect of the growth phase of Staphylococcus aureus on resistance to disinfectants in a suspension test. J Food Prot65:124–129[PubMed][CrossRef]
    [Google Scholar]
  25. Mah T. F., O'Toole G. A.. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39 [CrossRef][PubMed]
    [Google Scholar]
  26. Merlino J., Watson J., Rose B., Beard-Pegler M., Gottlieb T., Bradbury R., Harbour C.. 2002; Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in central Sydney, Australia. J Antimicrob Chemother49:793–801 [CrossRef][PubMed]
    [Google Scholar]
  27. NCCLS 1999; Methods for Determining Bactericidal Activity of Antimicrobial Agents Approved Guideline M26-A Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  28. Nielsen S. L., Obel N., Storgaard M., Andersen P. L.. 1997; The effect of quinolones on the intracellular killing of Staphylococcus aureus in neutrophil granulocytes. J Antimicrob Chemother39:617–622[PubMed][CrossRef]
    [Google Scholar]
  29. Okpanyi S. N., Ezeukwu G. C.. 1981; Anti-inflammatory and antipyretic activities of Azadirachta indica. Planta Med41:34–39 [CrossRef][PubMed]
    [Google Scholar]
  30. Ríos J. L., Recio M. C.. 2005; Medicinal plants and antimicrobial activity. J Ethnopharmacol100:80–84 [CrossRef][PubMed]
    [Google Scholar]
  31. Rochanakij S., Thebtaranonth Y., Yenjai C., Yuthavong Y.. 1985; Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture. Southeast Asian J Trop Med Public Health16:66–72[PubMed]
    [Google Scholar]
  32. Roy M. K., Kobori M., Takenaka M., Nakahara K., Shinmoto H., Isobe S., Tsushida T.. 2007; Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother Res21:245–250 [CrossRef][PubMed]
    [Google Scholar]
  33. Singh R., Ray P., Das A., Sharma M.. 2010; Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother65:1955–1958 [CrossRef][PubMed]
    [Google Scholar]
  34. Situ H., Bobek L. A.. 2000; In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob Agents Chemother44:1485–1493 [CrossRef][PubMed]
    [Google Scholar]
  35. Thakurta P., Bhowmik P., Mukherjee S., Hajra T. K., Patra A., Bag P. K.. 2007; Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. J Ethnopharmacol111:607–612 [CrossRef][PubMed]
    [Google Scholar]
  36. Tsao N., Luh T.-Y., Chou C.-K., Chang T.-Y., Wu J.-J., Liu C.-C., Lei H.-Y.. 2002; In vitro action of carboxyfullerene. J Antimicrob Chemother49:641–649 [CrossRef][PubMed]
    [Google Scholar]
  37. Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K.. 2015; Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One10:e0121313 [CrossRef][PubMed]
    [Google Scholar]
  38. Weber S. G., Gold H. S., Hooper D. C., Karchmer A. W., Carmeli Y.. 2003; Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients. Emerg Infect Dis9:1415–1422 [CrossRef][PubMed]
    [Google Scholar]
  39. Wei G. X., Campagna A. N., Bobek L. A.. 2006; Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother57:1100–1109 [CrossRef][PubMed]
    [Google Scholar]
  40. Witte W., Grimm H.. 1992; Occurrence of quinolone resistance in Staphylococcus aureus from nosocomial infection. Epidemiol Infect109:413–421 [CrossRef][PubMed]
    [Google Scholar]
  41. Zetola N., Francis J. S., Nuermberger E. L., Bishai W. R.. 2005; Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis5:275–286[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000343
Loading
/content/journal/jmm/10.1099/jmm.0.000343
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error