1887

Abstract

The aim of the study was to determine whether L. herb extract (LCE) used at subinhibitory concentration modifies the characteristics of , which is important in the pathogenesis of invasive infections originating from the bloodstream, in a way favourable for the human host. Polyphenol-rich LCE, a common ingredient in pharmaceutical products used for various cardiovascular and nervous system disorders, had shown interesting antibacterial and antibiofilm properties in our previous studies. Our current findings indicate that the following characteristics decreased, depending on the LCE concentration: (i) formation of aggregates in plasma, (ii) adherence to a fibrin-coated surface, (iii) staphylocoagulase-dependent plasma clotting, (iv) bacterial survival in whole human blood in an model, (v) expression of cell surface protein A and (vi) synthesis of α-toxin. However, staphylococcal tolerance to exogenous hydrogen peroxide was enhanced after pre-incubation with LCE, possibly due to the increased activity of bacterial antioxidant enzymes, a possibility confirmed by the higher production of superoxide dismutase and slightly higher production of catalase. The use of LCE at sub-MIC in and models resulted in the weakening of some important staphylococcal immunoprotective attributes but the strengthening of such virulence factors as those responsible for oxidative stress tolerance. Some of these results and the fact that LCE has direct anticoagulant properties, reflected in a reduced thrombin-dependent fibrinogen polymerization rate, suggest a risk of adverse effects, which could be important in the context of survival in the host.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000332
2016-10-18
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1171.html?itemId=/content/journal/jmm/10.1099/jmm.0.000332&mimeType=html&fmt=ahah

References

  1. Anderson M. J., Lin Y.-C., Gillman A. N., Parks P. J., Schlievert P. M., Peterson M. L. 2012; Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:1–10 [View Article]
    [Google Scholar]
  2. Battistoni A. 2003; Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Biochem Soc Trans 31:1326–1329 [View Article][PubMed]
    [Google Scholar]
  3. Bijak M., Saluk J., Ponczek M. B., Nowak P. 2013; Antithrombin effect of polyphenol-rich extracts from black chokeberry and grape seeds. Phytother Res 27:71–76 [View Article][PubMed]
    [Google Scholar]
  4. Camargo M. S., Bonacorsi C., Kitagawa R. R., DA Fonseca L. M., Raddi M. S. G. 2011; Quercetin reduces Staphylococcus aureus interaction with neutrophils. Int J Pharmacogn Phytochem Res 3:85–88
    [Google Scholar]
  5. Cheng A. G., McAdow M., Kim H. K., Bae T., Missiakas D. M., Schneewind O. 2010; Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036 [View Article][PubMed]
    [Google Scholar]
  6. Clements M. O., Watson S. P., Foster S. J. 1999; Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181:3898–3903[PubMed]
    [Google Scholar]
  7. Clinical Laboratory Standard Institute 2009 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically 8th Approved Standard M07-A8 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  8. Colavite P. M., Sartori A. 2014; Septic arthritis: immunopathogenesis, experimental models and therapy. J Venom Anim Toxins Incl Trop Dis 20:1–8 [View Article][PubMed]
    [Google Scholar]
  9. Committee on Herbal Medicinal Products (HMPC) 2010; Community herbal monograph on Leonurus cardiaca L., herba. European Medicines Agency 2010:127428
    [Google Scholar]
  10. Cushnie T. P., Lamb A. J. 2011; Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107 [View Article][PubMed]
    [Google Scholar]
  11. Danesi F., Kroon P. A., Saha S., de Biase D., D'Antuono L. F., Bordoni A. 2014; Mixed pro- and anti-oxidative effects of pomegranate polyphenols in cultured cells. Int J Mol Sci 15:19458–19471 [View Article][PubMed]
    [Google Scholar]
  12. Dastgheyb S. S., Villaruz A. E., Le K. Y., Tan V. Y., Duong A. C., Chatterjee S. S., Cheung G. Y., Joo H. S., Hickok N. J., Otto M. 2015; Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid. Infect Immun 83:2966–2975 [View Article][PubMed]
    [Google Scholar]
  13. Edwards A. M., Massey R. C. 2011; How does Staphylococcus aureus escape the bloodstream?. Trends Microbiol 19:184–190 [View Article][PubMed]
    [Google Scholar]
  14. Fraga C. G., Galleano M., Verstraeten S. V., Oteiza P. I. 2010; Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31:435–445 [View Article][PubMed]
    [Google Scholar]
  15. Gaupp R., Ledala N., Somerville G. A. 2012; Staphylococcal response to oxidative stress. Frontiers Cell Infect Microbiol 2:1–19 [View Article]
    [Google Scholar]
  16. Ginsburg I., Kohen R., Shalish M., Varon D., Shai E., Koren E. 2013; The oxidant-scavenging abilities in the oral cavity may be regulated by a collaboration among antioxidants in saliva, microorganisms, blood cells and polyphenols: a chemiluminescence-based study. PLoS One 8:e63062 [View Article][PubMed]
    [Google Scholar]
  17. Haaber J., Cohn M. T., Frees D., Andersen T. J., Ingmer H. 2012; Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7:e41075 [View Article][PubMed]
    [Google Scholar]
  18. Hall J. W., Yang J., Guo H., Ji Y. 2015; The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon. Front Microbiol 6:1–12 [View Article]
    [Google Scholar]
  19. Halliwell B. 2008; Are polyphenols antioxidants or pro-oxidants? what do we learn from cell culture and in vivo studies?. Arch Biochem Biophys 476:107–112 [View Article][PubMed]
    [Google Scholar]
  20. Heras B., Scanlon M. J., Martin J. L. 2015; Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol 79:208–215 [View Article][PubMed]
    [Google Scholar]
  21. Johannessen M., Sollid J. E., Hanssen A. M. 2012; Host- and microbe determinants that may influence the success of S. aureus colonization. Front Cell Infect Microbiol 2:1–14 [View Article][PubMed]
    [Google Scholar]
  22. Jongerius I., von Köckritz-Blickwede M., Horsburgh M. J., Ruyken M., Nizet V., Rooijakkers S. H. 2012; Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defences. J Innate Immun 4:301–311 [View Article][PubMed]
    [Google Scholar]
  23. Kang S. S., Kim J. G., Lee T. H., Oh K. B. 2006; Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol Pharm Bull 29:1751–1755 [View Article][PubMed]
    [Google Scholar]
  24. Khodaverdian V., Pesho M., Truitt B., Bollinger L., Patel P., Nithianantham S., Yu G., Delaney E., Jankowsky E., Shoham M. 2013; Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652 [View Article][PubMed]
    [Google Scholar]
  25. Kim H. K., Thammavongsa V., Schneewind O., Missiakas D. 2012; Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15:92–99 [View Article][PubMed]
    [Google Scholar]
  26. Loof T. G., Goldmann O., Naudin C., Mörgelin M., Neumann Y., Pils M. C., Foster S. J., Medina E., Herwald H. 2015; Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology 161:621–627 [View Article][PubMed]
    [Google Scholar]
  27. McAdow M., Kim H. K., Dedent A. C., Hendrickx A. P., Schneewind O., Missiakas D. M. 2011; Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7:e1002307 [View Article][PubMed]
    [Google Scholar]
  28. McAdow M., Missiakas D. M., Schneewind O. 2012; Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4:141–148 [View Article][PubMed]
    [Google Scholar]
  29. Micota B., Sadowska B., Podsędek A., Redzynia M., Różalska B. 2014; Leonurus cardiaca L. herb – a derived extract and an ursolic acid as the factors affecting the adhesion capacity of Staphylococcus aureus in the context of infective endocarditis. Acta Biochim Pol 61:385–388[PubMed]
    [Google Scholar]
  30. Oh K. B., Oh M. N., Kim J. G., Shin D. S., Shin J. 2006; Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl Microbiol Biotechnol 70:102–106 [View Article][PubMed]
    [Google Scholar]
  31. Painter K. L., Strange E., Parkhill J., Bamford K. B., Armstrong-James D., Edwards A. M. 2015; Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun 83:1830–1844 [View Article][PubMed]
    [Google Scholar]
  32. Powers M. E., Wardenburg B. J. 2014; Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 10:e1003871 [View Article]
    [Google Scholar]
  33. Rozemeijer W., Fink P., Rojas E., Jones C. H., Pavliakova D., Giardina P., Murphy E., Liberator P., Jiang Q. et al. 2014; Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease. PLoS One 10:e0116945 [View Article]
    [Google Scholar]
  34. Salgado-Pabón W., Breshears L., Spaulding A. R., Merriman J. A., Stach C. S., Horswill A. R., Peterson M. L., Schlievert P. M. 2013; Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. MBio 4:e0049413 [View Article][PubMed]
    [Google Scholar]
  35. Saw J. T., Bahari M. B., Ang H. H., Lim Y. H. 2006; Potential drug-herb interaction with antiplatelet/anticoagulant drugs. Complement Ther Clin Pract 12:236–241 [View Article][PubMed]
    [Google Scholar]
  36. Tahmouzi S., Ghodsi M. 2014; Optimum extraction of polysaccharides from motherwort leaf and its antioxidant and antimicrobial activities. Carbohydr Polym 112:396–403 [View Article][PubMed]
    [Google Scholar]
  37. Thammavongsa V., Kim H. K., Missiakas D., Schneewind O. 2015; Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543 [View Article][PubMed]
    [Google Scholar]
  38. Walker J. N., Crosby H. A., Spaulding A. R., Salgado-Pabón W., Malone C. L., Rosenthal C. B., Schlievert P. M., Boyd J. M., Horswill A. R. 2013; The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 9:e1003819 [View Article][PubMed]
    [Google Scholar]
  39. Waller A. K., Sage T., Kumar C., Carr T., Gibbins J. M., Clarke S. R. 2013; Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus formation via the paf receptor. J Infect Dis 208:2046–2057 [View Article][PubMed]
    [Google Scholar]
  40. Wang L., Bi C., Cai H., Liu B., Zhong X., Deng X., Wang T., Xiang H., Niu X., Wang D. 2015; The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase a inhibition. Front Microbiol 6:1031 [View Article][PubMed]
    [Google Scholar]
  41. Widmer E., Que Y. A., Entenza J. M., Moreillon P. 2006; New concepts in the pathophysiology of infective endocarditis. Curr Infect Dis Rep 8:271–279 [View Article][PubMed]
    [Google Scholar]
  42. Wojtyniak K., Szymański M., Matławska I. 2013; Leonurus cardiaca L. (motherwort): a review of its phytochemistry and pharmacology. Phytother Res 27:1115–1120 [View Article][PubMed]
    [Google Scholar]
  43. World Health Organization 2010; WHO monographs on medicinal plants commonly used in the newly independent states (NIS). Herba Leonuri229–240
    [Google Scholar]
  44. Zapotoczna M., McCarthy H., Rudkin J. K., O'Gara J. P., O'Neill E. 2015; An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J Infect Dis 212:1883–1893 [View Article][PubMed]
    [Google Scholar]
  45. Zhang X., Liu Y., Gao Y., Dong J., Mu C., Lu Q., Shao N., Yang G. 2011; Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus. Platelets 22:228–236 [View Article][PubMed]
    [Google Scholar]
  46. Zhang J., Liu H., Zhu K., Gong S., Dramsi S., Wang Y. T., Li J., Chen F., Zhang R. et al. 2014; Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci U S A 111:13517–13522 [View Article][PubMed]
    [Google Scholar]
  47. Zuo Z., Huang M., Kanfer I., Chow M. S. S., Cho W. C. S. 2015; Herb-drug interactions: systematic review, mechanisms, and therapies. Evid Based Complement Alternat Med 2015:239150 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000332
Loading
/content/journal/jmm/10.1099/jmm.0.000332
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error