Control of quorum sensing and virulence factors of using phenylalanine arginyl β-naphthylamide Free

Abstract

The spread of multidrug-resistant isolates constitutes a serious clinical challenge. Bacterial efflux machinery is a crucial mechanism of resistance among . Efflux inhibitors such as phenylalanine arginyl β-naphthylamide (PAβN) promote the bacterial susceptibility to antimicrobial agents. The pathogenesis of is coordinated via quorum sensing (QS). This study aims to find out the impact of efflux pump inhibitor, PAβN, on QS and virulence attributes in clinical isolates of . isolates were purified from urine and wound samples, and the antimicrobial susceptibility was carried out by disc diffusion method. The multidrug-resistant and the virulent isolates U16, U21, W19 and W23 were selected. PAβN enhanced their susceptibility to most antimicrobial agents. PAβN reduced QS signalling molecules -3-oxo-dodecanoyl--homoserine lactone and -butyryl--homoserine lactone without affecting bacterial viability. Moreover, PAβN eliminated their virulence factors such as elastase, protease, pyocyanin and bacterial motility. At the transcription level, PAβN significantly (<0.01) diminished the relative expression of QS cascade (, , , , and ) and QS regulated-type II secretory genes (elastase) and (exotoxin A) compared to the control untreated isolates U16 and U21. In addition, PAβN eliminated the relative expression of (exopolysaccharides) in U16 and U21 isolates. Hence, -tested isolates became hypo-virulent upon using PAβN. PAβN significantly blocked the QS circuit and inhibited the virulence factors expressed by clinical isolates of . PAβN could be a prime substrate for development of QS inhibitors and prevention of pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000327
2016-10-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1194.html?itemId=/content/journal/jmm/10.1099/jmm.0.000327&mimeType=html&fmt=ahah

References

  1. Adonizio A. L., Kong K. F., Mathee K. 2008; Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203 [View Article][PubMed]
    [Google Scholar]
  2. Amaral L., Molnar J. 2012; Inhibitors of efflux pumps of gram- negative bacteria inhibit quorum sensing. Open J Pharmacol 2:
    [Google Scholar]
  3. Bala A., Kumar R., Harjai K. 2011; Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol 60:300–306 [View Article][PubMed]
    [Google Scholar]
  4. Ben Haj Khalifa A., Moissenet D., Vu Thien H., Khedher M. 2011; Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation. Ann Biol Clin 69:393–403
    [Google Scholar]
  5. Blair J. M., Piddock L. J. 2009; Structure, function and inhibition of RND efflux pumps in gram-negative bacteria: an update. Curr Opin Microbiol 12:512–519 [View Article][PubMed]
    [Google Scholar]
  6. Chun C. K., Ozer E. A., Welsh M. J., Zabner J., Greenberg E. P. 2004; Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 101:3587–3590 [View Article][PubMed]
    [Google Scholar]
  7. CLSI 2014 Performance Standards for Antimicrobial Susceptibility Testing 24 Informational Supplement M100-M100 Wayne, PA: CLSI;
    [Google Scholar]
  8. de Kievit T. R. 2009; Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288 [View Article][PubMed]
    [Google Scholar]
  9. Du D., Venter H., Pos K. M., Luisi B. F. 2013; The machinery and mechanism of multidrug efflux in gram-negative bacteria. In Microbial Effux Pumps Current Research pp 35–48 Edited by Yu E. W., Zhang Q., Brown M. H. Ames, IA: Caister Academic Press;
    [Google Scholar]
  10. El-Mowafy S. A., Abd El Galil K. H., El-Messery S. M., Shaaban M. I. 2014a; Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa . Microb Pathog 74:25–32 [View Article][PubMed]
    [Google Scholar]
  11. El-Mowafy S. A., Shaaban M. I., Abd El Galil K. H. 2014b; Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa . J Appl Microbiol 117:1388–1399 [View Article][PubMed]
    [Google Scholar]
  12. Elmer K., Washington W., Stephen A., William J., Gary P., Paul S., Gall W. 2006 Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th edn. London: Lippincott Williams and Wilkins;
    [Google Scholar]
  13. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900[PubMed] [CrossRef]
    [Google Scholar]
  14. Gambello M. J., Kaye S., Iglewski B. H. 1993; LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184[PubMed]
    [Google Scholar]
  15. Golpasha I. D., Mousavi S. F., Owlia P., Siadat S. D., Irani S. 2015; Immunization with 3-oxododecanoyl-L-homoserine lactone-r-PcrV conjugate enhances survival of mice against lethal burn infections caused by Pseudomonas aeruginosa . Bosn J Basic Med Sci 15:15–24 [View Article][PubMed]
    [Google Scholar]
  16. Gupta R. K., Setia S., Harjai K. 2011; Expression of quorum sensing and virulence factors are interlinked in Pseudomonas aeruginosa: an in vitro approach. Am J Biomed Sci 3:116–125 [View Article]
    [Google Scholar]
  17. Hassan R., Shaaban M. I., Abdel Bar F. M., El-Mahdy A. M., Shokralla S. 2016; Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil. Front Microbiol 7:00659 [View Article]
    [Google Scholar]
  18. Hirakata Y., Kondo A., Hoshino K., Yano H., Arai K., Hirotani A., Kunishima H., Yamamoto N., Hatta M. et al. 2009; Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa . Int J Antimicrob Agents 34:343–346 [View Article][PubMed]
    [Google Scholar]
  19. Jakobsen T. H., van Gennip M., Phipps R. K., Shanmugham M. S., Christensen L. D., Alhede M., Skindersoe M. E., Rasmussen T. B., Friedrich K. et al. 2012; Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325 [View Article][PubMed]
    [Google Scholar]
  20. Jimenez P. N., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J. 2012; The multiple signaling systems regulating virulence in Pseudomonas aeruginosa . Microbiol Mol Biol Rev 76:46–65 [View Article][PubMed]
    [Google Scholar]
  21. Karatuna O., Yagci A. 2010; Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect 16:1770–1775 [View Article][PubMed]
    [Google Scholar]
  22. Koh C. L., Sam C. K., Yin W. F., Tan L. Y., Krishnan T., Chong Y. M., Chan K. G. 2013; Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217–6228 [View Article][PubMed]
    [Google Scholar]
  23. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [View Article][PubMed]
    [Google Scholar]
  24. Kvist M., Hancock V., Klemm P. 2008; Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382 [View Article][PubMed]
    [Google Scholar]
  25. Lamers R. P., Cavallari J. F., Burrows L. L. 2013; The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One 8:e60666 [View Article][PubMed]
    [Google Scholar]
  26. Lin Y. H., Xu J. L., Hu J., Wang L. H., Ong S. L., Leadbetter J. R., Zhang L. H. 2003; Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860 [View Article][PubMed]
    [Google Scholar]
  27. Liu D., Momb J., Thomas P. W., Moulin A., Petsko G. A., Fast W., Ringe D. 2008; Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry 47:7706–7714 [View Article][PubMed]
    [Google Scholar]
  28. Lomovskaya O., Warren M. S., Lee A., Galazzo J., Fronko R., Lee M., Blais J., Cho D., Chamberland S. et al. 2001; Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116 [View Article][PubMed]
    [Google Scholar]
  29. Mahamoud A., Chevalier J., Davin-Regli A., Barbe J., Pagès J. M. 2006; Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 7:843–847 [View Article][PubMed]
    [Google Scholar]
  30. Malloy J. L., Veldhuizen R. A., Thibodeaux B. A., O'Callaghan R. J., Wright J. R. 2005; Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 288:L409–L418 [View Article][PubMed]
    [Google Scholar]
  31. Miller J. A. 1972 Experiments in Molecular Genetics Plainview, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  32. Minagawa S., Inami H., Kato T., Sawada S., Yasuki T., Miyairi S., Horikawa M., Okuda J., Gotoh N. 2012; RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12: [View Article][PubMed]
    [Google Scholar]
  33. Miyairi S., Tateda K., Fuse E. T., Ueda C., Saito H., Takabatake T., Ishii Y., Horikawa M., Ishiguro M. et al. 2006; Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 55:1381–1387 [View Article][PubMed]
    [Google Scholar]
  34. Mohamed G. A., Ibrahim S. R., Shaaban M. I., Ross S. A. 2014; Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana . Fitoterapia 98:215–221 [View Article][PubMed]
    [Google Scholar]
  35. Moore N. M., Flaws M. L. 2011; Antimicrobial resistance mechanisms in Pseudomonas aeruginosa . Clin Lab Sci 24:47–51[PubMed]
    [Google Scholar]
  36. Moore J. D., Gerdt J. P., Eibergen N. R., Blackwell H. E. 2014; Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa . Chembiochem 15:435–442 [View Article][PubMed]
    [Google Scholar]
  37. Musthafa K. S., Saroja V., Pandian S. K., Ravi A. V. 2011; Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 36:55–67 [View Article][PubMed]
    [Google Scholar]
  38. Nalca Y., Jänsch L., Bredenbruch F., Geffers R., Buer J., Häussler S. 2006; Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688 [View Article][PubMed]
    [Google Scholar]
  39. Nikaido H., Pagès J. M. 2012; Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol Rev 36:340–363 [View Article][PubMed]
    [Google Scholar]
  40. Opperman T. J., Nguyen S. T. 2015; Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421 [View Article][PubMed]
    [Google Scholar]
  41. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201 [View Article][PubMed]
    [Google Scholar]
  42. Pearson J. P., Pesci E. C., Iglewski B. H. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767[PubMed] [CrossRef]
    [Google Scholar]
  43. Pearson J. P., Van Delden C., Iglewski B. H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210[PubMed]
    [Google Scholar]
  44. Rashid M. H., Kornberg A. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:4885–4890 [View Article][PubMed]
    [Google Scholar]
  45. Rasmussen T. B., Skindersoe M. E., Bjarnsholt T., Phipps R. K., Christensen K. B., Jensen P. O., Andersen J. B., Koch B., Larsen T. O. et al. 2005; Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340 [View Article][PubMed]
    [Google Scholar]
  46. Sarabhai S., Sharma P., Capalash N. 2013; Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8:e53441 [View Article][PubMed]
    [Google Scholar]
  47. Schneper L., Maricic N., Mathee K. 2012; Anti-quorum sensing, anti-bacterial, and immunomodulatory properties of Panax ginseng . J Pharm Pharm Sci 6:11–24
    [Google Scholar]
  48. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N. et al. 2008; Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa . Antimicrob Agents Chemother 52:3648–3663 [View Article][PubMed]
    [Google Scholar]
  49. Srinivas N., Jetter P., Ueberbacher B. J., Werneburg M., Zerbe K., Steinmann J., Van der Meijden B., Bernardini F., Lederer A. et al. 2010; Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa . Science 327:1010–1013 [View Article][PubMed]
    [Google Scholar]
  50. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I. 1998; Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66:2521–2528[PubMed]
    [Google Scholar]
  51. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. et al. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [View Article][PubMed]
    [Google Scholar]
  52. Tang K., Zhang X. H. 2014; Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12:3245–3282 [View Article][PubMed]
    [Google Scholar]
  53. Toder D. S., Ferrell S. J., Nezezon J. L., Rust L., Iglewski B. H. 1994; lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun 62:1320–1327[PubMed]
    [Google Scholar]
  54. Tomás M., Doumith M., Warner M., Turton J. F., Beceiro A., Bou G., Livermore D. M., Woodford N. 2010; Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 54:2219–2224 [View Article][PubMed]
    [Google Scholar]
  55. Varga Z. G., Armada A., Cerca P., Amaral L., Mior Ahmad Subki M. A., Savka M. A., Szegedi E., Kawase M., Motohashi N., Molnár J. 2012; Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In Vivo 26:277–285[PubMed]
    [Google Scholar]
  56. Vargiu A. V., Nikaido H. 2012; Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A 109:20637–20642 [View Article][PubMed]
    [Google Scholar]
  57. Vargiu A. V., Ruggerone P., Opperman T. J., Nguyen S. T., Nikaido H. 2014; Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58:6224–6234 [View Article][PubMed]
    [Google Scholar]
  58. Vasseur P., Vallet-Gely I., Soscia C., Genin S., Filloux A. 2005; The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985–987 [View Article][PubMed]
    [Google Scholar]
  59. Wagner V. E., Gillis R. J., Iglewski B. H. 2004; Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa . Vaccine 22:S15–S20 [View Article][PubMed]
    [Google Scholar]
  60. Wang Y., Ma S. 2014; Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Curr Med Chem 21:296–311 [View Article][PubMed]
    [Google Scholar]
  61. Whitehead N. A., Barnard A. M., Slater H., Simpson N. J., Salmond G. P. 2001; Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404 [View Article][PubMed]
    [Google Scholar]
  62. Zaki A. A., Shaaban M. I., Hashish N. E., Amer M. A., Lahloub M. F. 2013; Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Sci Pharm 81:251–258 [View Article][PubMed]
    [Google Scholar]
  63. Zhou L., Zheng H., Tang Y., Yu W., Gong Q. 2013; Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–637 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000327
Loading
/content/journal/jmm/10.1099/jmm.0.000327
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed