1887

Abstract

Dissemination of antibiotic resistance in mediated by AmpC β-lactamase, extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) is clinically significant. A simple and relatively quick method for the detection of these resistance phenotypes would greatly improve chemotherapeutic recommendation. This technology would provide valuable input in our surveillance of resistance on a global stage, particularly if the methodology could be applicable to resource-poor settings. A resazurin microtitre plate (RMP) assay incorporating cloxacillin, clavulanic acid and EDTA for the rapid phenotypic identification of AmpC, ESBL and MBL and the co-existence of β-lactamases has been developed. A total of 47 molecularly characterized clinical isolates producing AmpCs, ESBLs, co-producers of ESBL and AmpC, MBLs and co-producers of ESBL and MBL were phenotypically examined using the RMP assay. The ceftazidime- and cefotaxime-based RMP assays successfully detected all 16 AmpC, 14 ESBL and 9 MBL producers, 6 ESBL–AmpC co-producers and 2 ESBL–MBL co-producers without false-positive results. The ceftazidime-based assay was more reliable in detecting AmpC alone, while the cefotaxime-based assay performed better in identifying co-producers of ESBL and AmpC. There was no difference in the detection of ESBL and MBL producers. The findings of the present study suggest that use of the RMP assay with particular β-lactamase inhibitors explicitly detects three different β-lactamases, as well as co-existence of β-lactamases, within 6 h of initial isolation of the pathogen. This assay is applicable to carry out in any laboratory, is cost-effective and is easy to interpret. It could be implemented in screening patients and controlling infection and for surveillance purposes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000326
2016-10-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1079.html?itemId=/content/journal/jmm/10.1099/jmm.0.000326&mimeType=html&fmt=ahah

References

  1. Aung A. K., Skinner M. J., Lee F. J., Cheng A. C. 2012; Changing epidemiology of bloodstream infection pathogens over time in adult non-specialty patients at an Australian tertiary hospital. Commun Dis Intell Q Rep 36:E333341[PubMed]
    [Google Scholar]
  2. Bebrone C. 2007; Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74:1686–1701 [View Article][PubMed]
    [Google Scholar]
  3. Beesley T., Gascoyne N., Knott-Hunziker V., Petursson S., Waley S. G., Jaurin B., Grundström T. 1983; The inhibition of class C beta-lactamases by boronic acids. Biochem J 209:229–233 [View Article][PubMed]
    [Google Scholar]
  4. Bradford P. A. 2001; Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [View Article][PubMed]
    [Google Scholar]
  5. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [View Article][PubMed]
    [Google Scholar]
  6. Bush K., Fisher J. F. 2011; Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 65:455–478 [View Article][PubMed]
    [Google Scholar]
  7. Clinical and Laboratory Standards Institute 2012; Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI document M7-A7, Ninth Edition . 2614–34 Pennsylvania: Wayne, L.Z;
  8. Coudron P. E. 2005; Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis . J Clin Microbiol 43:4163–4167 [View Article][PubMed]
    [Google Scholar]
  9. Doi Y., Paterson D. L., Egea P., Pascual A., López-Cerero L., Navarro M. D., Adams-Haduch J. M., Qureshi Z. A., Sidjabat H. E., Rodríguez-Baño J. 2010; Extended-spectrum and CMY-type beta- lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clin Microbiol Infect 16:33–38 [View Article][PubMed]
    [Google Scholar]
  10. Drawz S. M., Bonomo R. A. 2010; Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201 [View Article][PubMed]
    [Google Scholar]
  11. Drieux L., Brossier F., Sougakoff W., Jarlier V. 2008; Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14:90–103 [View Article][PubMed]
    [Google Scholar]
  12. Gazin M., Paasch F., Goossens H., Malhotra-Kumar S. MOSAR WP2 and SATURN WP1 Study Teams 2012; Current trends in culture-based and molecular detection of extended-spectrum-β-lactamase-harboring and carbapenem-resistant Enterobacteriaceae . J Clin Microbiol 50:1140–1146 [View Article][PubMed]
    [Google Scholar]
  13. Goossens H., Grabein B. 2005; Prevalence and antimicrobial susceptibility data for extended-spectrum beta-lactamase- and AmpC- producing Enterobacteriaceae from the MYSTIC program in Europe and the United States (1997-2004). Diagn Microbiol Infect Dis 53:257–264 [View Article][PubMed]
    [Google Scholar]
  14. Gupta V., Kumarasamy K., Gulati N., Garg R., Krishnan P., Chander J. 2012; AmpC β-lactamases in nosocomial isolates of Klebsiella pneumoniae from India. Indian J Med Res 136:237–241[PubMed]
    [Google Scholar]
  15. Hattori T., Kawamura K., Arakawa Y. 2013; Comparison of test methods for detecting metallo-β-lactamase-producing gram-negative bacteria. Jpn J Infect Dis 66:512–518 [View Article][PubMed]
    [Google Scholar]
  16. Imtiaz U., Billings E., Knox J. R., Manavathu E. K., Lerner S. A., Mobashery S. 1993; Inactivation of class A beta-lactamases by clavulanic acid: the role of arginine-244 in a proposed nonconcerted sequence of events. J Am Chem Soc 115:4435–4442 [View Article]
    [Google Scholar]
  17. Jacoby G. A. 2009; AmpC beta-lactamases. Clin Microbiol Rev 22:161–182 [View Article][PubMed]
    [Google Scholar]
  18. Jeong S. H., Song W., Kim J. S., Kim H. S., Lee K. M. 2009; Broth microdilution method to detect extended-spectrum beta-lactamases and AmpC beta-lactamases in Enterobacteriaceae isolates by use of clavulanic acid and boronic acid as inhibitors. J Clin Microbiol 47:3409–3412 [View Article][PubMed]
    [Google Scholar]
  19. Kalp M., Totir M. A., Buynak J. D., Carey P. R. 2009; Different intermediate populations formed by tazobactam, sulbactam, and clavulanate reacting with SHV-1 β-lactamases: Raman crystallographic evidence. J Am Chem Soc 131:2338–2347 [View Article][PubMed]
    [Google Scholar]
  20. Kiener P. A., Waley S. G. 1978; Reversible inhibitors of penicillinases. Biochem J 169:197–204 [View Article][PubMed]
    [Google Scholar]
  21. Laxminarayan R., Duse A., Wattal C., Zaidi A. K., Wertheim H. F., Sumpradit N., Vlieghe E., Hara G. L., Gould I. M. et al. 2013; Antibiotic resistance – the need for global solutions. Lancet Infect Dis 13:1057–1098 [View Article][PubMed]
    [Google Scholar]
  22. Lee K., Hong S. G., Park Y. J., Lee H. S., Song W., Jeong J., Yong D., Chong Y. 2005; Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC β-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae . Diagn Microbiol Infect Dis 53:319–323 [View Article][PubMed]
    [Google Scholar]
  23. Liebana E., Carattoli A., Coque T. M., Hasman H., Magiorakos A. P., Mevius D., Peixe L., Poirel L., Schuepbach-Regula G. et al. 2013; Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56:1030–1037 [View Article][PubMed]
    [Google Scholar]
  24. Lukac P. J., Bonomo R. A., Logan L. K. 2015; Extended-spectrum β-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 60:1389–1397 [View Article][PubMed]
    [Google Scholar]
  25. Nasim K., Elsayed S., Pitout J. D., Conly J., Church D. L., Gregson D. B. 2004; New method for laboratory detection of AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae . J Clin Microbiol 42:4799–4802 [View Article][PubMed]
    [Google Scholar]
  26. Nordmann P., Dortet L., Poirel L. 2012; Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae . J Clin Microbiol 50:3016–3022 [View Article][PubMed]
    [Google Scholar]
  27. O'Brien J., Wilson I., Orton T., Pognan F. 2000; Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426 [View Article][PubMed]
    [Google Scholar]
  28. Palomino J. C., Martin A., Camacho M., Guerra H., Swings J., Portaels F. 2002; Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis . Antimicrob Agents Chemother 46:2720–2722 [View Article][PubMed]
    [Google Scholar]
  29. Patel G., Bonomo R. A. 2013; ‘Stormy waters ahead’: global emergence of carbapenemases. Front Microbiol 4:48 [View Article][PubMed]
    [Google Scholar]
  30. Patrice N., Thierry N., Laurent P. 2011; Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis J 17:1791–1798 [CrossRef]
    [Google Scholar]
  31. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [CrossRef]
    [Google Scholar]
  32. Pitout J. D., Reisbig M. D., Venter E. C., Church D. L., Hanson N. D. 2003; Modification of the double-disk test for detection of Enterobacteriaceae producing extended-spectrum and AmpC β-lactamases. J Clin Microbiol 41:3933–3935 [View Article][PubMed]
    [Google Scholar]
  33. Pitout J. D., Laupland K. B. 2008; Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166 [View Article][PubMed]
    [Google Scholar]
  34. Pitout J. D., Le P. G., Moore K. L., Church D. L., Gregson D. B. 2010; Detection of AmpC beta-lactamases in Escherichia coli, Klebsiella spp., Salmonella spp. and Proteus mirabilis in a regional clinical microbiology laboratory. Clin Microbiol Infect 16:165–170 [View Article][PubMed]
    [Google Scholar]
  35. Poirel L., Gniadkowski M., Nordmann P. 2002; Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 50:1031–1034 [View Article][PubMed]
    [Google Scholar]
  36. Polsfuss S., Bloemberg G. V., Giger J., Meyer V., Böttger E. C., Hombach M. 2011; Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae . J Clin Microbiol 49:2798–2803 [View Article][PubMed]
    [Google Scholar]
  37. Poulou A., Grivakou E., Vrioni G., Koumaki V., Pittaras T., Pournaras S., Tsakris A. 2014; Modified CLSI extended-spectrum β-lactamase (ESBL) confirmatory test for phenotypic detection of ESBLs among Enterobacteriaceae producing various β-lactamases. J Clin Microbiol 52:1483–1489 [View Article][PubMed]
    [Google Scholar]
  38. Rogers B. A., Aminzadeh Z., Hayashi Y., Paterson D. L. 2011; Country-to-country transfer of patients and the risk of multi-resistant bacterial infection. Clin Infect Dis 53:49–56 [View Article][PubMed]
    [Google Scholar]
  39. Roschanski N., Fischer J., Guerra B., Roesler U. 2014; Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae . PLoS One 9:e100956 [View Article][PubMed]
    [Google Scholar]
  40. Song W., Bae I. K., Lee Y. N., Lee C. H., Lee S. H., Jeong S. H. 2007; Detection of extended-spectrum beta-lactamases by using boronic acid as an AmpC beta-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli . J Clin Microbiol 45:1180–1184 [View Article][PubMed]
    [Google Scholar]
  41. Sundsfjord A., Simonsen G. S., Haldorsen B. C., Haaheim H., Hjelmevoll S. O., Littauer P., Dahl K. H. 2004; Genetic methods for detection of antimicrobial resistance. APMIS 112:815–837 [View Article][PubMed]
    [Google Scholar]
  42. Tan T. Y., Ng S. Y., Teo L., Koh Y., Teok C. H. 2008; Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis . J Clin Pathol 61:642–644 [View Article][PubMed]
    [Google Scholar]
  43. Tängdén T., Giske C. G. 2015; Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med 277:501–512 [View Article][PubMed]
    [Google Scholar]
  44. Walsh T. R., Toleman M. A., Poirel L., Nordmann P. 2005; Metallo-beta-lactamases: the quiet before the storm?. Clin Microbiol Rev 18:306–325 [View Article][PubMed]
    [Google Scholar]
  45. Woodford N. 2010; Rapid characterization of beta-lactamases by multiplex PCR. Methods Mol Biol 642:181–192 [View Article][PubMed]
    [Google Scholar]
  46. Yagi T., Wachino J., Kurokawa H., Suzuki S., Yamane K., Doi Y., Shibata N., Kato H., Shibayama K., Arakawa Y. 2005; Practical methods using boronic acid compounds for identification of class C beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli . J Clin Microbiol 43:2551–2558 [View Article][PubMed]
    [Google Scholar]
  47. Yan J. J., Wu J. J., Tsai S. H., Chuang C. L. 2004; Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-beta-lactamases in gram-negative bacilli. Diagn Microbiol Infect Dis 49:5–11 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000326
Loading
/content/journal/jmm/10.1099/jmm.0.000326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error