1887

Abstract

Serotyping forms the basis of all national and international surveillance networks for Salmonella. Public health microbiology is currently being transformed by high-throughput DNA sequencing, which opens the door to serovar determination using this powerful technique. Twenty-nine Salmonella isolates referred to the Public Health England between 1994 and 2004 for serovar identification were selected for this study, and they all presented with novel antigenic formulae. Results from a combination of traditional phenotypic and molecular assays were compared. Twenty-two isolates (76 %) were subsequently independently confirmed as new types; of these, 18 (82 %) were grouped as Salmonella enterica subspecies I, and four (18 %) were S. enterica subspecies II. In general, it is shown that there is concordance between the DNA sequence type and traditional phenotypic serotype, but it would be necessary to analyse a larger data set to confirm this. Traditional multilocus sequence typing (MLST) by Sanger sequencing also correlates to in silico whole-genome sequencing MLST. This permits the continuation of traditional serovar nomenclature alongside sequence type methods and enhances the ability to infer true phylogenetic relationships between isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000325
2016-10-18
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1074.html?itemId=/content/journal/jmm/10.1099/jmm.0.000325&mimeType=html&fmt=ahah

References

  1. Achtman M., Wain J., Weill F. X., Nair S., Zhou Z., Sangal V., Krauland M. G., Hale J. L., Harbottle H. et al.( 2012;). Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. . PLoS Pathog 8:,e1002776. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andino A., Hanning I..( 2015;). Salmonella enterica: survival, colonization, and virulence differences among serovars. . Scientific World J 2015: 1–16. [CrossRef]
    [Google Scholar]
  3. Ashton P. M., Peters T., Ameh L., McAleer R., Petrie S., Nair S., Muscat I., de Pinna E., Dallman T..( 2015;). Whole genome sequencing for the retrospective investigation of an outbreak of Salmonella typhimurium DT 8. . PLoS Curr 7:. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ashton P. M., Nair S., Peters T. M., Bale J. A., Powell D. G., Painset A., Tewolde R., Schaefer U., Jenkins C. et al.( 2016;). Identification of Salmonella for public health surveillance using whole genome sequencing. . PeerJ 4:,e1752. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barrow G., Feltham R. K. A..( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  6. Bochner B. R..( 1989;). Sleuthing out bacterial identities. . Nature 339: 157–158. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bochner B. R..( 2009;). Global phenotypic characterization of bacteria. . FEMS Microbiol Rev 33: 191–205. [CrossRef] [PubMed]
    [Google Scholar]
  8. Biolog, Inc., US Patent # 5,627,045.
  9. Grimont P. A. D., Weill F. X..( 2007;). Antigenic formulae of the salmonella aerovars. . In WHO Collaborating Center for Reference and Research on Salmonella, , 9th edn.. Paris, France:: Institut Pasteur website.
    [Google Scholar]
  10. Hopkins K. L., Peters T. M., Lawson A. J., Owen R. J..( 2009;). Rapid identification of Salmonella enterica subsp. arizonae and S. enterica subsp. diarizonae by real-time polymerase chain reaction. . Diagn Microbiol Infect Dis 64: 452–454. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hopkins K. L., Lawson A. J., Connell S., Peters T. M., de Pinna E..( 2011;). A novel real-time polymerase chain reaction for identification of Salmonella enterica subspecies enterica. . Diagn Microbiol Infect Dis 70: 278–280. [CrossRef] [PubMed]
    [Google Scholar]
  12. Issenhuth-Jeanjean S., Roggentin P., Mikoleit M., Guibourdenche M., de Pinna E., Nair S., Fields P. I., Weill F. X..( 2015;). Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le minor scheme. . Res Microbiol 165: 526–530. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kauffmann F..( 1966;). The Bacteriology of Enterobacteriaceae. Copenhagen:: Munksgaard;.
    [Google Scholar]
  14. Kidgell C., Reichard U., Wain J., Linz B., Torpdahl M., Dougan G., Achtman M..( 2002;). Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old infection. . Infect Genet Evol 2: 39–45. [CrossRef]
    [Google Scholar]
  15. Leekitcharoenphon P., Nielsen E. M., Kaas R. S., Lund O., Aarestrup F. M..( 2014;). Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. . PLoS One 9:,e87991. [CrossRef] [PubMed]
    [Google Scholar]
  16. Luheshi L., Raza S., Moorthie S., Hall A., Blackburn L., Rands C., Sagoo G., Chowdhury S., Kroese M., Burton H..( 2015;). Pathogen Genomics Into Practice. PHG Foundation:.
    [Google Scholar]
  17. McQuiston J. R., Parrenas R., Ortiz-Rivera M., Gheesling L., Brenner F., Fields P. I..( 2004;). Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. . J Clin Microbiol 42: 1923–1932. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mortimer C. K., Peters T. M., Gharbia S. E., Logan J. M., Arnold C..( 2004;). Towards the development of a DNA-sequence based approach to serotyping of Salmonella enterica. . BMC Microbiol 4: 31. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nair S., Wain J., Connell S., de Pinna E., Peters T..( 2014;). Salmonella enterica subspecies II infections in England and Wales – the use of multilocus sequence typing to assist serovar identification. . J Med Microbiol 63: 831–834. [CrossRef] [PubMed]
    [Google Scholar]
  20. Paulsen I. T., Holmes A. J.. (editors) ( 2014;). Environmental Microbiology: Methods and Protocols, , Methods in Microbiology.. NewYork, USA:: Humana Press;.
    [Google Scholar]
  21. Public Health England( 2014;). PHE gastrointestinal infections data. Summary of Salmonella surveillance, 2013. .
  22. Ranieri M. L., Shi C., Moreno Switt A. I., den Bakker H. C., Wiedmann M..( 2013;). Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction. . J Clin Microbiol 51: 1786–1797. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shi C., Singh P., Ranieri M. L., Wiedmann M., Moreno Switt A. I..( 2015;). Molecular methods for serovar determination of Salmonella. . Crit Rev Microbiol 41: 309–325.[CrossRef]
    [Google Scholar]
  24. Shipp C. R., Rowe B..( 1980;). A mechanised microtechnique for Salmonella serotyping. . J Clin Pathol 33: 595. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wattiau P., Boland C., Bertrand S..( 2011;). Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. . Appl Environ Microbiol 77: 7877–7885. [CrossRef] [PubMed]
    [Google Scholar]
  26. Zhang S., Yin Y., Jones M. B., Zhang Z., Deatherage Kaiser B. L., Dinsmore B. A., Fitzgerald C., Fields P. I., Deng X..( 2015;). Salmonella serotype determination utilizing high-throughput genome sequencing data. . J Clin Microbiol 53: 1685–1692. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000325
Loading
/content/journal/jmm/10.1099/jmm.0.000325
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error