1887

Abstract

Serotyping forms the basis of all national and international surveillance networks for . Public health microbiology is currently being transformed by high-throughput DNA sequencing, which opens the door to serovar determination using this powerful technique. Twenty-nine isolates referred to the Public Health England between 1994 and 2004 for serovar identification were selected for this study, and they all presented with novel antigenic formulae. Results from a combination of traditional phenotypic and molecular assays were compared. Twenty-two isolates (76 %) were subsequently independently confirmed as new types; of these, 18 (82 %) were grouped as subspecies I, and four (18 %) were subspecies II. In general, it is shown that there is concordance between the DNA sequence type and traditional phenotypic serotype, but it would be necessary to analyse a larger data set to confirm this. Traditional multilocus sequence typing (MLST) by Sanger sequencing also correlates to whole-genome sequencing MLST. This permits the continuation of traditional serovar nomenclature alongside sequence type methods and enhances the ability to infer true phylogenetic relationships between isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000325
2016-10-18
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1074.html?itemId=/content/journal/jmm/10.1099/jmm.0.000325&mimeType=html&fmt=ahah

References

  1. Achtman M., Wain J., Weill F. X., Nair S., Zhou Z., Sangal V., Krauland M. G., Hale J. L., Harbottle H. et al. 2012; Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog8:e1002776 [CrossRef][PubMed]
    [Google Scholar]
  2. Andino A., Hanning I.. 2015; Salmonella enterica: survival, colonization, and virulence differences among serovars. Scientific World J2015:1–16 [CrossRef]
    [Google Scholar]
  3. Ashton P. M., Peters T., Ameh L., McAleer R., Petrie S., Nair S., Muscat I., de Pinna E., Dallman T.. 2015; Whole genome sequencing for the retrospective investigation of an outbreak of Salmonella typhimurium DT 8. PLoS Curr7: [CrossRef][PubMed]
    [Google Scholar]
  4. Ashton P. M., Nair S., Peters T. M., Bale J. A., Powell D. G., Painset A., Tewolde R., Schaefer U., Jenkins C. et al. 2016; Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ4:e1752 [CrossRef][PubMed]
    [Google Scholar]
  5. Barrow G., Feltham R. K. A.. 1993; Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  6. Bochner B. R.. 1989; Sleuthing out bacterial identities. Nature339:157–158 [CrossRef][PubMed]
    [Google Scholar]
  7. Bochner B. R.. 2009; Global phenotypic characterization of bacteria. FEMS Microbiol Rev33:191–205 [CrossRef][PubMed]
    [Google Scholar]
  8. Biolog, Inc., US Patent # 5,627,045
  9. Grimont P. A. D., Weill F. X.. 2007; Antigenic formulae of the salmonella aerovars. In WHO Collaborating Center for Reference and Research on Salmonella, 9th edn. Paris, France: Institut Pasteur website
    [Google Scholar]
  10. Hopkins K. L., Peters T. M., Lawson A. J., Owen R. J.. 2009; Rapid identification of Salmonella enterica subsp. arizonae and S. enterica subsp. diarizonae by real-time polymerase chain reaction. Diagn Microbiol Infect Dis64:452–454 [CrossRef][PubMed]
    [Google Scholar]
  11. Hopkins K. L., Lawson A. J., Connell S., Peters T. M., de Pinna E.. 2011; A novel real-time polymerase chain reaction for identification of Salmonella enterica subspecies enterica. Diagn Microbiol Infect Dis70:278–280 [CrossRef][PubMed]
    [Google Scholar]
  12. Issenhuth-Jeanjean S., Roggentin P., Mikoleit M., Guibourdenche M., de Pinna E., Nair S., Fields P. I., Weill F. X.. 2015; Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le minor scheme. Res Microbiol165:526–530 [CrossRef][PubMed]
    [Google Scholar]
  13. Kauffmann F.. 1966; The Bacteriology of Enterobacteriaceae Copenhagen: Munksgaard;
    [Google Scholar]
  14. Kidgell C., Reichard U., Wain J., Linz B., Torpdahl M., Dougan G., Achtman M.. 2002; Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old infection. Infect Genet Evol2:39–45 [CrossRef]
    [Google Scholar]
  15. Leekitcharoenphon P., Nielsen E. M., Kaas R. S., Lund O., Aarestrup F. M.. 2014; Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One9:e87991 [CrossRef][PubMed]
    [Google Scholar]
  16. Luheshi L., Raza S., Moorthie S., Hall A., Blackburn L., Rands C., Sagoo G., Chowdhury S., Kroese M., Burton H.. 2015; Pathogen Genomics Into Practice PHG Foundation:
    [Google Scholar]
  17. McQuiston J. R., Parrenas R., Ortiz-Rivera M., Gheesling L., Brenner F., Fields P. I.. 2004; Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol42:1923–1932 [CrossRef][PubMed]
    [Google Scholar]
  18. Mortimer C. K., Peters T. M., Gharbia S. E., Logan J. M., Arnold C.. 2004; Towards the development of a DNA-sequence based approach to serotyping of Salmonella enterica. BMC Microbiol4:31 [CrossRef][PubMed]
    [Google Scholar]
  19. Nair S., Wain J., Connell S., de Pinna E., Peters T.. 2014; Salmonella enterica subspecies II infections in England and Wales – the use of multilocus sequence typing to assist serovar identification. J Med Microbiol63:831–834 [CrossRef][PubMed]
    [Google Scholar]
  20. Paulsen I. T., Holmes A. J.. (editors) 2014; Environmental Microbiology: Methods and Protocols, Methods in Microbiology. NewYork, USA: Humana Press;
    [Google Scholar]
  21. Public Health England 2014; PHE gastrointestinal infections data. Summary of Salmonella surveillance, 2013.
  22. Ranieri M. L., Shi C., Moreno Switt A. I., den Bakker H. C., Wiedmann M.. 2013; Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction. J Clin Microbiol51:1786–1797 [CrossRef][PubMed]
    [Google Scholar]
  23. Shi C., Singh P., Ranieri M. L., Wiedmann M., Moreno Switt A. I.. 2015; Molecular methods for serovar determination of Salmonella. Crit Rev Microbiol41:309–325[CrossRef]
    [Google Scholar]
  24. Shipp C. R., Rowe B.. 1980; A mechanised microtechnique for Salmonella serotyping. J Clin Pathol33:595 [CrossRef][PubMed]
    [Google Scholar]
  25. Wattiau P., Boland C., Bertrand S.. 2011; Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol77:7877–7885 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang S., Yin Y., Jones M. B., Zhang Z., Deatherage Kaiser B. L., Dinsmore B. A., Fitzgerald C., Fields P. I., Deng X.. 2015; Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol53:1685–1692 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000325
Loading
/content/journal/jmm/10.1099/jmm.0.000325
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error