1887

Abstract

Hayne occurs in the Atlantic Rainforest, which is considered one of the most important and endangered tropical forests on the planet. Although literature works have described many spp., their biological activities remain little known. In the present study, we aimed to evaluate (1) the potential of the hydroalcoholic extract from leaves (CTE) to act against the causative agents of tooth decay and apical periodontitis and (2) the cytotoxicity and mutagenicity of CTE to ensure that it is safe for subsequent application. Concerning the tested bacteria, the MIC and the minimum bactericidal concentration of CTE varied between 100 and 400 µg ml . The time-kill assay conducted at a CTE concentration of 100 µg ml evidenced bactericidal activity against (ATCC 33277) and (clinical isolate) within 72 h. CTE at 200 µg mlinhibited and biofilm formation by at least 50 %. A combination of CTE with chlorhexidine dichlorohydrate did not prompt any synergistic effects. The colony-forming assay conducted on V79 cells showed that CTE was cytotoxic at concentrations above 156 µg ml . CTE exerted mutagenic effect on V79 cells, but the micronucleus test conducted on Swiss mice and the Ames test did not reveal any mutagenicity. Therefore, the use of standardized and safe extracts could be an important strategy to develop novel oral care products with antibacterial action. These extracts could also serve as a source of compounds for the discovery of new promising biomolecules.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000316
2016-09-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/9/937.html?itemId=/content/journal/jmm/10.1099/jmm.0.000316&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E.. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol43:5721–5732 [CrossRef][PubMed]
    [Google Scholar]
  2. Adzu B., Balogun S. O., Pavan E., Ascêncio S. D., Soares I. M., Aguiar R. W., Ribeiro R. V., Beserra Â. M., de Oliveira R. G. et al. 2015; Evaluation of the safety, gastroprotective activity and mechanism of action of standardised leaves infusion extract of Copaifera malmei Harms. J Ethnopharmacol175:378–389 [CrossRef][PubMed]
    [Google Scholar]
  3. Allaker R. P., Douglas C. W.. 2008; Novel anti-microbial therapies for dental plaque-related diseases. Int J Antimicrob Agents33:8–13 [CrossRef][PubMed]
    [Google Scholar]
  4. Alves F. R. F., Silva M. G., Rôças I. N., Siqueira Júnior J. F.. 2013a; Biofilm biomass disruption by natural substances with potential for endodontic use. Braz Oral Res27:20–25 [CrossRef]
    [Google Scholar]
  5. Alves J. M., Munari C. C., De Azevedo Bentes Monteiro Neto M., Furtado R. A., Senedese J. M., Bastos J. K., Tavares D. C.. 2013b; In vivo protective effect of Copaifera langsdorffii hydroalcoholic extract on micronuclei induction by doxorubicin. J Appl Toxicol33:854–860 [CrossRef][PubMed]
    [Google Scholar]
  6. Ambrosio S. R., Furtado N. A., de Oliveira D. C., Da Costa F. B., Martins C. H., De Carvalho T. C., Porto T. S., Veneziani R. C.. 2008; Antimicrobial activity of kaurane diterpenes against oral pathogens. Z Naturforsch C63:326–330 [CrossRef][PubMed]
    [Google Scholar]
  7. Bernstein L., Kaldor J., McCann J., Pike M. C.. 1982; An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mutat Res97:267–281 [CrossRef][PubMed]
    [Google Scholar]
  8. Brancalion A. P., Oliveira R. B., Sousa J. P., Groppo M., Berretta A. A., Barros M. E., Boim M. A., Bastos J. K.. 2012; Effect of hydroalcoholic extract from Copaifera langsdorffii leaves on urolithiasis induced in rats. Urol Res40:475–481 [CrossRef][PubMed]
    [Google Scholar]
  9. CLSI 2007; Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved Standard, 7th edn.M11–A7 Wayne, PA: USA;
    [Google Scholar]
  10. CLSI 2009; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved StandardM7–A8 Wayne, PA: USA;
    [Google Scholar]
  11. Caetano da Silva S. D., Mendes de Souza M. G., Oliveira Cardoso M. J., Da Silva Moraes T., Ambrósio S. R., Sola Veneziani R. C., Martins C. H.. 2014; Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections. Anaerobe30:146–152 [CrossRef][PubMed]
    [Google Scholar]
  12. Cai L., Wu C. D.. 1996; Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod59:987–990 [CrossRef][PubMed]
    [Google Scholar]
  13. Cavalcanti B. C., Costa-Lotufo L. V., Moraes M. O., Burbano R. R., Silveira E. R., Cunha K. M., Rao V. S., Moura D. J., Rosa R. M. et al. 2006; Genotoxicity evaluation of kaurenoic acid, a bioactive diterpenoid present in copaiba oil. Food Chem Toxicol44:388–392 [CrossRef][PubMed]
    [Google Scholar]
  14. Chaturvedi V., Ramani R., Ghannoum M. A., Killian S. B., Holliday N., Knapp C., Ostrosky-Zeichner L., Messer S. A., Pfaller M. A. et al. 2008; Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei . Antimicrob Agents Chemother52:1500–1502 [CrossRef][PubMed]
    [Google Scholar]
  15. Chung J. Y., Choo J. H., Lee M. H., Hwang J. K.. 2006; Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans . Phytomedicine13:261–266 [CrossRef][PubMed]
    [Google Scholar]
  16. D'Arrigo M., Ginestra G., Mandalari G., Furneri P. M., Bisignano G.. 2010; Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli . Phytomedicine17:317–322 [CrossRef][PubMed]
    [Google Scholar]
  17. Day A. J., Williamson G.. 2003; Absorption of quercetin glycosides. In Flavonoids in Health and Disease pp31–412 Edited by Rice-Evans C., Packer L.. New York: Marcel Dekker;
    [Google Scholar]
  18. de Oliveira R. B., Coelho E. B., Rodrigues M. R., Costa-Machado A. R., de Sousa J. P., Berretta A. A., Bastos J. K.. 2013; Effect of the Copaifera langsdorffii desf. leaf extract on the ethylene glycol-induced nephrolithiasis in rats. Evid Based Complement Alternat Med2013:131372 [CrossRef][PubMed]
    [Google Scholar]
  19. Donovan J. L., Waterhouse A. L.. 2003; Bioavailability of flavanol monomers. In Flavonoids in Health and Disease pp.413–440 Edited by Rice-Evans C., Packer L.. New York: Marcel Dekker;
    [Google Scholar]
  20. Eastmond D. A., Tucker J. D.. 1989; Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ Mol Mutagen13:34–43 [CrossRef][PubMed]
    [Google Scholar]
  21. Fenech M.. 2000; The in vitro micronucleus technique. Mutat Res455:81–95 [CrossRef][PubMed]
    [Google Scholar]
  22. Ferguson L. R.. 2001; Role of plant polyphenols in genomic stability. Mutat Res475:89–111 [CrossRef][PubMed]
    [Google Scholar]
  23. Flores G., Dastmalchi K., Wu S. B., Whalen K., Dabo A. J., Reynertson K. A., Foronjy R. F., D Armiento J. M., Kennelly E. J.. 2013; Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem141:889–895 [CrossRef][PubMed]
    [Google Scholar]
  24. Franken N. A., Rodermond H. M., Stap J., Haveman J., Van Bree C.. 2006; Clonogenic assay of cells in vitro . Nat Protoc1:2315–2319 [CrossRef][PubMed]
    [Google Scholar]
  25. Fux C. A., Shirtliff M., Stoodley P., Costerton J. W.. 2005; Can laboratory reference strains mirror ‘real-world’ pathogenesis?. Trends Microbiol13:58–63 [CrossRef][PubMed]
    [Google Scholar]
  26. Gómez-Florit M., Monjo M., Ramis J. M.. 2015; Quercitrin for periodontal regeneration: effects on human gingival fibroblasts and mesenchymal stem cells. Sci Rep5:16593 [CrossRef][PubMed]
    [Google Scholar]
  27. Grenier D., Bouclin R.. 2006; Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane. Oral Microbiol Immunol21:319–325 [CrossRef][PubMed]
    [Google Scholar]
  28. Grenier D., La V. D.. 2011; Proteases of Porphyromonas gingivalis as important virulence factors in periodontal disease and potential targets for plant-derived compounds: a review article. Curr Drug Targets12:322–331[PubMed][CrossRef]
    [Google Scholar]
  29. Hirasawa M., Takada K.. 2002; Susceptibility of Streptococcus mutans and Streptococcus sobrinus to cell wall inhibitors and development of a novel selective medium for S. sobrinus . Caries Res36:155–160[PubMed][CrossRef]
    [Google Scholar]
  30. Holt S. C., Ebersole J. L.. 2005; Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 200038:72–122 [CrossRef][PubMed]
    [Google Scholar]
  31. How K. Y., Song K. P., Chan K. G.. 2016; Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Frontiers Microbiol7:53 [CrossRef]
    [Google Scholar]
  32. Jenkinson H. F., Lamont R. J.. 2006; Oral microbial ecology. In Oral Microbiology and Immunology Edited by Lamont R. J., Burne R. A., Lantz M. S., Le Blanc D. J.. Washington, DC: ASM Press;
    [Google Scholar]
  33. Kirsch-Volders M., Sofuni T., Aardema M., Albertini S., Eastmond D., Fenech M., Ishidate M. Jr, Kirchner S., Lorge E.. 2003; Corrigendum to ‘Report from the in vitro micronucleus assay working group’. Mutat Res540:153–163[CrossRef]
    [Google Scholar]
  34. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J.. 2002; Communication among oral bacteria. Microbiol Mol Biol Rev66:486–505[PubMed][CrossRef]
    [Google Scholar]
  35. Leandro L. F., Munari C. C., Sato V. L., Alves J. M., De Oliveira P. F., Mastrocola D. F., Martins S. P., Moraes T. S., De Oliveira A. I. et al. 2013; Assessment of the genotoxicity and antigenotoxicity of (+)-usnic acid in V79 cells and Swiss mice by the micronucleus and comet assays. Mutat Res753:101–106 [CrossRef][PubMed]
    [Google Scholar]
  36. Leandro L. M., Vargas F. S., Barbosa P. C., Neves J. K., Da Silva J. A., Da Veiga-Junior V. F.. 2012; Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules17:3866–3889 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee S. Y., So Y. J., Shin M. S., Cho J. Y., Lee J.. 2014; Antibacterial effects of afzelin isolated from Cornus macrophylla on Pseudomonas aeruginosa, a leading cause of illness in immunocompromised individuals. Molecules19:3173–3180 [CrossRef][PubMed]
    [Google Scholar]
  38. Lewis R. E., Diekema D. J., Messer S. A., Pfaller M. A., Klepser M. E.. 2002; Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother49:345–351 [CrossRef][PubMed]
    [Google Scholar]
  39. MacGregor J. T., Heddle J. A., Hite M., Margolin B. H., Ramel C., Salamone M. F., Tia R. R., Wild D.. 1987; Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res189:103–112 [CrossRef][PubMed]
    [Google Scholar]
  40. Maiden M. F., Cohee P., Tanner A. C.. 2003; Proposal to conserve the adjectival form of the specific epithet in the reclassification of Bacteroides forsythus Tanner et al. 1986 to the genus Tannerella Sakamoto et al. 2002 as Tannerella forsythia corrig., gen. nov., comb. nov. Request for an opinion. Int J Syst Evol Microbiol53:2111–2112 [CrossRef][PubMed]
    [Google Scholar]
  41. Marcenes W., Kassebaum N. J., Bernabé E., Flaxman A., Naghavi M., Lopez A., Murray C. J.. 2013; Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res92:592–597 [CrossRef][PubMed]
    [Google Scholar]
  42. Marcotte H., Lavoie M. C.. 1998; Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev62:71–109[PubMed]
    [Google Scholar]
  43. Maron D. M., Ames B. N.. 1983; Revised methods for the Salmonella mutagenicity test. Mutat Res113:173–215[PubMed][CrossRef]
    [Google Scholar]
  44. Masson-Meyers D. S., Andrade T. A. M., Leite S. N., Frade M. A. C.. 2013; Cytotoxicity and wound healing properties of Copaifera langsdorffii oleoresin in rabbits. Int J Nat Prod Sci3:10–20
    [Google Scholar]
  45. McCann J., Choi E., Yamasaki E., Ames B. N.. 1975; Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A72:5135–5139 [CrossRef][PubMed]
    [Google Scholar]
  46. Melo P., Azevedo A., Henriques M.. 2008; Dental caries – the disease before cavity formation. Acta Pediatr Port39:253–259
    [Google Scholar]
  47. Mersch-Sundermann V., Kassie F., Böhmer S., Lu W. Q., Wohlfahrth R., Sobel R., Brunn H. E., ElSohly M. A., Ross S. A., Stahl T.. 2004; Extract of Toxicodendron quercifolium caused genotoxicity and antigenotoxicity in bone marrow cells of CD1 mice. Food Chem Toxicol42:1611–1617 [CrossRef][PubMed]
    [Google Scholar]
  48. Milani J. F., Rocha J. F., De Pádua Teixeira S.. 2012; Oleoresin glands in copaíba (Copaifera trapezifolia Hayne: Leguminosae), a Brazilian rainforest tree. Trees26:769–775[CrossRef]
    [Google Scholar]
  49. More G., Tshikalange T. E., Lall N., Botha F., Meyer J. J.. 2008; Antimicrobial activity of medicinal plants against oral microorganisms. J Ethnopharmacol119:473–477 [CrossRef][PubMed]
    [Google Scholar]
  50. Najafi M. H., Taheri M., Mokhtari M. R., Forouzanfar A., Farazi F., Mirzaee M., Ebrahiminik Z., Mehrara R.. 2012; Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dent Res J9:305–308
    [Google Scholar]
  51. Palombo E. A.. 2011; Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evid Based Complement Alternat Med680354:
    [Google Scholar]
  52. Park J. H., Lee J. K., Um H. S., Chang B. S., Lee S. Y.. 2014; A periodontitis-associated multispecies model of an oral biofilm. J Periodontal Implant Sci44:79–84 [CrossRef][PubMed]
    [Google Scholar]
  53. Paster B. J., Olsen I., Aas J. A., Dewhirst F. E.. 2006; The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 200042:80–87 [CrossRef][PubMed]
    [Google Scholar]
  54. Peciuliene V., Maneliene R., Balcikonyte E., Drukteinis S., Rutkunas V.. 2008; Microorganisms in root canal infections: a review. Stomatologija10:4–9[PubMed]
    [Google Scholar]
  55. Petersen P. J., Wang T. Z., Dushin R. G., Bradford P. A.. 2004; Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob Agents Chemother48:739–746[PubMed][CrossRef]
    [Google Scholar]
  56. Pieri F. A., José R. M., Galvão N. N., Nero L. A., Moreira M. A. S.. 2010; Antimicrobial activity of autoclaved and non autoclaved copaiba oil on Listeria monocytogenes . Cienc Rural40:1797–1801[CrossRef]
    [Google Scholar]
  57. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L.. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother45:2475–2479[PubMed][CrossRef]
    [Google Scholar]
  58. Resende F. A., Tomazella I. M., Barbosa L. C., Ponce M., Furtado R. A., Pereira A. C., Bastos J. K., Silva M. L. A., Tavares D. C.. 2010; Effect of the dibenzylbutyrolactone lignin (−)-hinokinin on doxorubicin and methyl methanesulfonate clastogenicity in V79 Chinese hamster lung fibroblasts. Mutat Res19:62–66[CrossRef]
    [Google Scholar]
  59. Resende F. A., Vilegas W., Dos Santos L. C., Varanda E. A.. 2012; Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules17:5255–5268 [CrossRef][PubMed]
    [Google Scholar]
  60. Saleem M., Nazir M., Ali M. S., Hussain H., Lee Y. S., Riaz N., Jabbar A.. 2010; Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep27:238–254 [CrossRef]
    [Google Scholar]
  61. Santos A. O., Ueda-Nakamura T., Dias Filho B. P., Veiga Junior V. F., Pinto A. C., Nakamura C. V.. 2008; Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem Inst Oswaldo Cruz103:277–281 [CrossRef][PubMed]
    [Google Scholar]
  62. Sarker S. D., Nahar L., Kumarasamy Y.. 2007; Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods42:321–324 [CrossRef][PubMed]
    [Google Scholar]
  63. Schroeter H., Boyd C., Spencer J. P., Williams R. J., Cadenas E., Rice-Evans C.. 2002; MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging23:861–880[PubMed][CrossRef]
    [Google Scholar]
  64. Senedese J. M., Alves J. M., Lima I. M., De Andrade E. A., Furtado R. A., Bastos J. K., Tavares D. C.. 2013; Chemopreventive effect of Copaifera langsdorffii leaves hydroalcoholic extract on 1,2-dimethylhydrazine-induced DNA damage and preneoplastic lesions in rat colon. BMC Complement Altern Med13:3 [CrossRef][PubMed]
    [Google Scholar]
  65. Shin S. W., Jung E., Kim S., Kim J. H., Kim E. G., Lee J., Park D.. 2013; Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS One8:e61971 [CrossRef][PubMed]
    [Google Scholar]
  66. Siqueira J. F., Rôças I. N.. 2009; Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod107:870–878 [CrossRef][PubMed]
    [Google Scholar]
  67. SOS Mata Atlântica & INPE (Instituto Nacional de Pesquisas Espaciais 2015; Atlas dos Remanescentes Florestais da Mata Atlântica: período 2013–2014. Relatório técnico. Available in: http://mapas.sosma.org.br/site_media/download/atlas_2013-2014_relatorio_tecnico_2015.pdf Accessed on 27 October 2015
  68. Sousa J. P., Brancalion A. P., Júnior M. G., Bastos J. K.. 2012; A validated chromatographic method for the determination of flavonoids in Copaifera langsdorffii by HPLC. Nat Prod Commun7:25–28[PubMed]
    [Google Scholar]
  69. Souza A. B., Martins C. H. G., Souza M. G. M., Furtado N. A. J. C., Heleno V. C. G., Sousa J. P. B., Rocha E. M. P., Bastos J. K., Cunha W. R.. 2011a; Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res25:215–220
    [Google Scholar]
  70. Souza A. B., De Souza M. G., Moreira M. A., Moreira M. R., Furtado N. A. J. C., Martins C. H. G., Bastos J. K., Santos R. A., Heleno V. C. G. et al. 2011b; Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules16:9611–9619 [CrossRef]
    [Google Scholar]
  71. Stewart P. S., Costerton J. W.. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138 [CrossRef][PubMed]
    [Google Scholar]
  72. Sugimura T., Sato S., Nagao M., Yahagi T., Matsushima T., Seino Y., Takeuchi M., Kawachi T.. 1976; Overlapping of carcinogens and mutagens. In Fundamental of Cancer Prevention pp191–215 Edited by Magee R. N., Takayama S., Sugimura T., Matsushima T.. Baltimore: University Park Press;
    [Google Scholar]
  73. Uysal A., Gunes E., Sarikurkcu C., Celik H., Durak Y., Uren M. C.. 2016; New prospective materials for chemoprevention: three phlomis. Br J Pharm Res10:1–13
    [Google Scholar]
  74. Veiga V. F., Pinto A. C., De Lima H. C.. 2006; The essential oil composition of Copaifera trapezifolia Hayne leaves. J Essent Oil Res18:430–431[CrossRef]
    [Google Scholar]
  75. Wei G. X., Campagna A. N., Bobek L. A.. 2006; Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother57:1100–1109 [CrossRef][PubMed]
    [Google Scholar]
  76. Zeiger E.. 1985; The Salmonella mutagenicity assay for identification of presumptive carcinogens. In Handbook of Carcinogen Testing pp83–99 Edited by Milman H. A., Weisburger E. K.. Park Ridge, NJ: Noyes Publishers;
    [Google Scholar]
  77. Zeiger E., Haseman J. K., Shelby M. D., Margolin B. H., Tennant R. W.. 1990; Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: confirmation of earlier results with 41 additional chemicals. Environ Mol Mutagen16:1–14[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000316
Loading
/content/journal/jmm/10.1099/jmm.0.000316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error