1887

Abstract

is responsible for a wide variety of infections that include superficial skin and soft tissue infections, septicaemia, central nervous system infections, endocarditis, osteomyelitis and pneumonia. Others have demonstrated the importance of toxin–antitoxin (TA) modules in the formation of persisters and the role of the Clp proteolytic system in the regulation of these TA modules. This study was conducted to determine the effect of and deletion on persister cell numbers following antibiotic treatment. Deletion of resulted in a significant decrease in persister cells following treatment with oxacillin and erythromycin but not with levofloxacin and daptomycin. Deletion of resulted in a decrease in persister cells following treatment with oxacillin. These differences were dependent on the antibiotic class and the CFU ml in which the cells were treated. Persister revival assays for all the bacterial strains in these studies demonstrated a significant delay in resumption of growth characteristic of persister cells, indicating that the surviving organisms in this study were not likely due to spontaneous antibiotic resistance. Based on our results, ClpP and possibly ClpC play a role in persister cell formation or maintenance, and this effect is dependent on antibiotic class and the CFU ml or the growth phase of the cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000304
2016-08-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/848.html?itemId=/content/journal/jmm/10.1099/jmm.0.000304&mimeType=html&fmt=ahah

References

  1. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Götz F.. 1992; Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis . Eur J Biochem204:1149–1154 [CrossRef][PubMed]
    [Google Scholar]
  2. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S.. 2004; Bacterial persistence as a phenotypic switch. Science305:1622–1625 [CrossRef][PubMed]
    [Google Scholar]
  3. Bigger J. W.. 1944; Treatment of staphylococcal infections with penicillin. Lancet497–500[CrossRef]
    [Google Scholar]
  4. Brooun A., Liu S., Lewis K.. 2000; A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother44:640–646 [CrossRef][PubMed]
    [Google Scholar]
  5. Brötz-Oesterhelt H., Beyer D., Kroll H.-P., Endermann R., Ladel C., Schroeder W., Hinzen B., Raddatz S., Paulsen H. et al. 2005; Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med11:1082–1087 [CrossRef][PubMed]
    [Google Scholar]
  6. Chastanet A., Fert J., Msadek T.. 2003; Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol47:1061–1073 [CrossRef][PubMed]
    [Google Scholar]
  7. Cohn M. T., Kjelgaard P., Frees D., Penadés J. R., Ingmer H.. 2011; Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus . Microbiology157:677–684 [CrossRef][PubMed]
    [Google Scholar]
  8. Conlon B. P., Nakayasu E. S., Fleck L. E., LaFleur M. D., Isabella V. M., Coleman K., Lewis K.. 2013; Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature503:365–370 [CrossRef][PubMed]
    [Google Scholar]
  9. Dhar N., McKinney J. D.. 2007; Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol10:30–38 [CrossRef][PubMed]
    [Google Scholar]
  10. Donegan N. P., Cheung A. L.. 2009; Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol191:2795–2805 [CrossRef][PubMed]
    [Google Scholar]
  11. Donegan N. P., Thompson E. T., Fu Z., Cheung A. L.. 2010; Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus . J Bacteriol192:1416–1422 [CrossRef][PubMed]
    [Google Scholar]
  12. Elsholz A. K., Michalik S., Zühlke D., Hecker M., Gerth U.. 2010; CtsR, the Gram-positive master regulator of protein quality control, feels the heat. EMBO J29:3621–3629 [CrossRef][PubMed]
    [Google Scholar]
  13. Feng J., Michalik S., Varming A. N., Andersen J. H., Albrecht D., Jelsbak L., Krieger S., Ohlsen K., Hecker M. et al. 2013; Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus . J Proteome Res12:547–558 [CrossRef][PubMed]
    [Google Scholar]
  14. Frees D., Qazi S. N., Hill P. J., Ingmer H.. 2003; Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol48:1565–1578 [CrossRef][PubMed]
    [Google Scholar]
  15. Frees D., Chastanet A., Qazi S., Sørensen K., Hill P., Msadek T., Ingmer H.. 2004; Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol54:1445–1462 [CrossRef][PubMed]
    [Google Scholar]
  16. Frees D., Sørensen K., Ingmer H.. 2005; Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Infect Immun73:8100–8108 [CrossRef][PubMed]
    [Google Scholar]
  17. Frees D., Savijoki K., Varmanen P., Ingmer H.. 2007; Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol63:1285–1295 [CrossRef][PubMed]
    [Google Scholar]
  18. Frees D., Gerth U., Ingmer H.. 2014; Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus . Int J Med Microbiol304:142–149 [CrossRef][PubMed]
    [Google Scholar]
  19. Hofsteenge N., van Nimwegen E., Silander O. K.. 2013; Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli . BMC Microbiol13:25 [CrossRef][PubMed]
    [Google Scholar]
  20. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. 2002; sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol184:5457–5467 [CrossRef][PubMed]
    [Google Scholar]
  21. Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K.. 2004a; Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett230:13–18 [CrossRef][PubMed]
    [Google Scholar]
  22. Keren I., Shah D., Spoering A., Kaldalu N., Lewis K.. 2004b; Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli . J Bacteriol186:8172–8180 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim J. S., Heo P., Yang T. J., Lee K. S., Jin Y. S., Kim S. K., Shin D., Kweon D. H.. 2011; Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochem Biophys Res Commun413:105–110 [CrossRef][PubMed]
    [Google Scholar]
  24. Kohanski M. A., Dwyer D. J., Collins J. J.. 2010; How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol8:423–435 [CrossRef][PubMed]
    [Google Scholar]
  25. Kreiswirth B. N., Löfdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305:709–712 [CrossRef][PubMed]
    [Google Scholar]
  26. Kwan B. W., Valenta J. A., Benedik M. J., Wood T. K.. 2013; Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother57:1468–1473 [CrossRef][PubMed]
    [Google Scholar]
  27. Lechner S., Lewis K., Bertram R.. 2012; Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol22:235–244 [CrossRef][PubMed]
    [Google Scholar]
  28. Levin B. R.. 2004; Microbiology noninherited resistance to antibiotics. Science305:1578–1579[CrossRef]
    [Google Scholar]
  29. Lewis K.. 2007; Persister cells, dormancy and infectious disease. Nat Rev Microbiol5:48–56 [CrossRef][PubMed]
    [Google Scholar]
  30. Lowy F. D.. 1998; Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  31. Maisonneuve E., Shakespeare L. J., Jørgensen M. G., Gerdes K.. 2011; Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A108:13206–13211 [CrossRef][PubMed]
    [Google Scholar]
  32. Michel A., Agerer F., Hauck C. R., Herrmann M., Ullrich J., Hacker J., Ohlsen K.. 2006; Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol188:5783–5796 [CrossRef][PubMed]
    [Google Scholar]
  33. Möker N., Dean C. R., Tao J.. 2010; Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol192:1946–1955 [CrossRef][PubMed]
    [Google Scholar]
  34. Nakano S., Zheng G., Nakano M. M., Zuber P.. 2002; Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis . J Bacteriol184:3664–3670 [CrossRef][PubMed]
    [Google Scholar]
  35. Shapiro J. A., Nguyen V. L., Chamberlain N. R.. 2011; Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J Med Microbiol60:950–960 [CrossRef][PubMed]
    [Google Scholar]
  36. Shoji M., Cui L., Iizuka R., Komoto A., Neoh H. M., Watanabe Y., Hishinuma T., Hiramatsu K.. 2011; walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus . Antimicrob Agents Chemother55:3870–3881 [CrossRef][PubMed]
    [Google Scholar]
  37. Singh V. K., Utaida S., Jackson L. S., Jayaswal R. K., Wilkinson B. J., Chamberlain N. R.. 2007; Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus . Microbiology153:3162–3173 [CrossRef]
    [Google Scholar]
  38. Singh K., Singh V. K.. 2012; Expression of four methionine sulfoxide reductases in Staphylococcus aureus . Int J Microbiol2012:719594 [CrossRef][PubMed]
    [Google Scholar]
  39. Tashiro Y., Kawata K., Taniuchi A., Kakinuma K., May T., Okabe S.. 2012; RelE-mediated dormancy is enhanced at high cell density in Escherichia coli . J Bacteriol194:1169–1176 [CrossRef][PubMed]
    [Google Scholar]
  40. Tomasz A.. 1979; The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Ann Rev Microbiol33:113–137 [CrossRef]
    [Google Scholar]
  41. Yang S., Hay I. D., Cameron D. R., Speir M., Cui B., Su F., Peleg A. Y., Lithgow T., Deighton M. A., Qu Y.. 2015; Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms. Sci Rep5:18578 [CrossRef]
    [Google Scholar]
  42. Yoshizumi S., Zhang Y., Yamaguchi Y., Chen L., Kreiswirth B. N., Inouye M.. 2009; Staphylococcus aureus YoeB homologues inhibit translation initiation. J Bacteriol191:5868–5872 [CrossRef][PubMed]
    [Google Scholar]
  43. You C., Sekowska A., Francetic O., Martin-Verstraete I., Wang Y., Danchin A.. 2008; Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis . BMC Microbiol8:128 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000304
Loading
/content/journal/jmm/10.1099/jmm.0.000304
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error