1887

Abstract

The first plasmid-mediated AmpC β-lactamase-producing (pAmpC KP) isolate was detected in December 2009 in Hungary. Hungarian microbiological laboratories were asked to send all KP strains showing cefoxitin resistance and decreased susceptibility or resistance to any third-generation cephalosporins to the Reference Laboratories at the National Center for Epidemiology. Investigation was conducted in order to outline spatio-temporal distribution and genetic characterization of pAmpC-KP isolates in Hungary. Between December 2009 and December 2013, 312 consecutive KP clinical isolates were confirmed as producing pAmpCs. All isolates showed resistance to third-generation cephalosporins, aminoglycosides and fluoroquinolones, and 77 % were non-susceptible to at least one carbapenem. Analysis of β-lactamase genes showed in all and additionally in 90 % of isolates. PFGE typing revealed 12 pulsotypes; of these, KP053 (262/312) and KP070 (38/312) belonged to sequence type ST11 and comprised 96 % of the isolates. The and co-producing KP053/ST11 clone affected 234 patients and spread to 55 healthcare centres across Hungary during the study period. Three KP053 isolates were also resistant to colistin. In two of these, the gene was truncated by IS, while in the third isolate, insertional inactivation of by IS was identified. Hungary is the first European country showing endemic spread of facilitated by the international high-risk clone ST11. The rapid countrywide spread of this multidrug-resistant clone seriously endangers Hungarian healthcare facilities and warrants strengthening of infection control practices and prudent use of carbapenems and colistin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000302
2016-09-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/9/1020.html?itemId=/content/journal/jmm/10.1099/jmm.0.000302&mimeType=html&fmt=ahah

References

  1. Bauernfeind A., Chong Y., Schweighart S.. 1989; Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection17:316–321 [CrossRef][PubMed]
    [Google Scholar]
  2. Bush K., Jacoby G. A., Medeiros A. A.. 1995; A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother39:1211–1233 [CrossRef][PubMed]
    [Google Scholar]
  3. Campos M., Llorens C., Sempere J. M., Futami R., Rodriguez I., Carrasco P., Capilla R., Latorre A., Coque T. M. et al. 2015; A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biol Direct10:41 [CrossRef][PubMed]
    [Google Scholar]
  4. Cannatelli A., Giani T., D'Andrea M. M., Di Pilato V., Arena F., Conte V., Tryfinopoulou K., Vatopoulos A., Rossolini G. M.. COLGRIT Study Group 2014; MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother58:5696–5703 [CrossRef][PubMed]
    [Google Scholar]
  5. Carattoli A.. 2009; Resistance plasmid families in Enterobacteriaceae . Antimicrob Agents Chemother53:2227–2238 [CrossRef][PubMed]
    [Google Scholar]
  6. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J.. 2005; Identification of plasmids by PCR-based replicon typing. J Microbiol Methods63:219–228 [CrossRef][PubMed]
    [Google Scholar]
  7. Centers for Disease Control and Prevention (CDC) 2000; Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri . http://www.cdc.gov/pulsenet/PDF/ecoli-shigella-salmonella-pfge-protocol-508c.pdf
  8. Cheng Y. H., Lin T. L., Pan Y. J., Wang Y. P., Lin Y. T., Wang J. T.. 2015; Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother59:2909–2913 [CrossRef][PubMed]
    [Google Scholar]
  9. Chudácková E., Bergerová T., Fajfrlík K., Cervená D., Urbásková P., Empel J., Gniadkowski M., Hrabák J.. 2010; Carbapenem-nonsusceptible strains of Klebsiella pneumoniae producing SHV-5 and/or DHA-1 beta-lactamases in a Czech hospital. FEMS Microbiol Lett309:62–70 [CrossRef][PubMed]
    [Google Scholar]
  10. Compain F., Decré D., Fulgencio J. P., Berraho S., Arlet G., Verdet C.. 2014; Molecular characterization of DHA-1-producing Klebsiella pneumoniae isolates collected during a 4-year period in an intensive care unit. Diagn Microbiol Infect Dis80:159–161 [CrossRef][PubMed]
    [Google Scholar]
  11. Cuzon G., Naas T., Guibert M., Nordmann P.. 2010; In vivo selection of imipenem-resistant Klebsiella pneumoniae producing extended-spectrum beta-lactamase CTX-M-15 and plasmid-encoded DHA-1 cephalosporinase. Int J Antimicrob Agents35:265–268 [CrossRef][PubMed]
    [Google Scholar]
  12. Damjanova I., Tóth A., Pászti J., Hajbel-Vékony G., Jakab M., Berta J., Milch H., Füzi M.. 2008; Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new ‘MRSAs'?. J Antimicrob Chemother 62:978–985 [CrossRef][PubMed]
    [Google Scholar]
  13. Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S.. 2005; Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol43:4178–4182 [CrossRef][PubMed]
    [Google Scholar]
  14. Diestra K., Miró E., Martí C., Navarro D., Cuquet J., Coll P., Navarro F.. 2011; Multiclonal epidemic of Klebsiella pneumoniae isolates producing DHA-1 in a Spanish hospital. Clin Microbiol Infect17:1032–1036 [CrossRef][PubMed]
    [Google Scholar]
  15. Doi Y., Arakawa Y.. 2007; 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis45:88–94 [CrossRef][PubMed]
    [Google Scholar]
  16. Empel J., Hrabák J., Kozińska A., Bergerová T., Urbášková P., Kern-Zdanowicz I., Gniadkowski M.. 2010; DHA-1-producing Klebsiella pneumoniae in a teaching hospital in the Czech Republic. Microb Drug Resist16:291–295 [CrossRef][PubMed]
    [Google Scholar]
  17. European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2013a;http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_3.1.pdf
  18. European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2013b; EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance Version 1.0. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf
  19. Freitas F., Machado E., Ribeiro T. G., Novais Â., Peixe L.. 2014; Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur J Clin Microbiol Infect Dis33:551–558 [CrossRef][PubMed]
    [Google Scholar]
  20. Grundmann H., Livermore D. M., Giske C. G., Canton R., Rossolini G. M., Campos J., Vatopoulos A., Gniadkowski M., Toth A. et al. 2010; Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill15:Pii19711[PubMed]
    [Google Scholar]
  21. Guo Q., Wang P., Ma Y., Yang Y., Ye X., Wang M.. 2012; Co-production of SFO-1 and DHA-1 β-lactamases and 16S rRNA methylase ArmA in clinical isolates of Klebsiella pneumoniae. J Antimicrob Chemother67:2361–2366 [CrossRef][PubMed]
    [Google Scholar]
  22. Jacoby G. A.. 2009; AmpC β-lactamases. Clin Microbiol Rev22:161–182[CrossRef]
    [Google Scholar]
  23. Kado C. I., Liu S. T.. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol145:1365–1373[PubMed]
    [Google Scholar]
  24. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M.. 1978; A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid1:417–420 [CrossRef][PubMed]
    [Google Scholar]
  25. Mata C., Miró E., Toleman M., Rivera M. A., Walsh T. R., Navarro F.. 2011; Association of bla (DHA-1) and qnrB genes carried by broad-host-range plasmids among isolates of Enterobacteriaceae at a Spanish hospital. Clin Microbiol Infect17:1514–1517 [CrossRef][PubMed]
    [Google Scholar]
  26. Matsumura Y., Tanaka M., Yamamoto M., Nagao M., Machida K., Ito Y., Takakura S., Ogawa K., Yoshizawa A. et al. 2015; High prevalence of carbapenem resistance among plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae during outbreaks in liver transplantation units. Int J Antimicrob Agents45:33–40 [CrossRef][PubMed]
    [Google Scholar]
  27. National Bacteriological Surveillance Management Team 2014; NBS Annual reports. . National Center for Epidemiology, Budapest, Hungary. www.oek.hu
  28. Olaitan A. O., Diene S. M., Kempf M., Berrazeg M., Bakour S., Gupta S. K., Thongmalayvong B., Akkhavong K., Somphavong S. et al. 2014; Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents44:500–507 [CrossRef][PubMed]
    [Google Scholar]
  29. Podschun R., Ullmann U.. 1998; Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev11:589–603
    [Google Scholar]
  30. Poirel L., Bonnin R. A., Nordmann P.. 2012; Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother56:559–562 [CrossRef][PubMed]
    [Google Scholar]
  31. Poirel L., Jayol A., Bontron S., Villegas M. V., Ozdamar M., Türkoglu S., Nordmann P.. 2015; The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae . J Antimicrob Chemother70:75–80 [CrossRef][PubMed]
    [Google Scholar]
  32. Pérez-Pérez F. J., Hanson N. D.. 2002; Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol40:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
  33. Ramirez M. S., Traglia G. M., Lin D. L., Tran T., Tolmasky M. E.. 2014; Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr2:1–15 [CrossRef][PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2 edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Shin J., Ko K. S.. 2014; Comparative study of genotype and virulence in CTX-M-producing and non-extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. Antimicrob Agents Chemother58:2463–2467 [CrossRef][PubMed]
    [Google Scholar]
  36. Shin S. Y., Bae I. K., Kim J., Jeong S. H., Yong D., Kim J. M., Lee K.. 2012; Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol61:239–245 [CrossRef][PubMed]
    [Google Scholar]
  37. Tamang M. D., Seol S. Y., Oh J. Y., Kang H. Y., Lee J. C., Lee Y. C., Cho D. T., Kim J.. 2008; Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae hospital. Antimicrob Agents Chemother52:4159–4162 [CrossRef][PubMed]
    [Google Scholar]
  38. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B.. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol33:2233–2239[PubMed]
    [Google Scholar]
  39. Tsai Y. K., Fung C. P., Lin J. C., Chen J. H., Chang F. Y., Chen T. L., Siu L. K.. 2011; Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother55:1485–1493 [CrossRef][PubMed]
    [Google Scholar]
  40. Villa L., García-Fernández A., Fortini D., Carattoli A.. 2010; Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother65:2518–2529 [CrossRef][PubMed]
    [Google Scholar]
  41. Woodford N., Turton J. F., Livermore D. M.. 2011; Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev35:736–755 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000302
Loading
/content/journal/jmm/10.1099/jmm.0.000302
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error