1887

Abstract

Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011–2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin–neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential - and -glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific -glycosylation pattern could distinguish between clades II and III. Analysis of potential -glycosylation sites in F protein indicated that samples from this study have two potential -glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000297
2016-08-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/793.html?itemId=/content/journal/jmm/10.1099/jmm.0.000297&mimeType=html&fmt=ahah

References

  1. Bartlett E. J., Castaño A., Surman S. R., Collins P. L., Skiadopoulos M. H., Murphy B. R.. 2007; Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1) vaccine candidates containing stabilized mutations in the P/C and L genes. Virol J4:67 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartlett E. J., Cruz A. M., Esker J., Castaño A., Schomacker H., Surman S. R., Hennessey M., Boonyaratanakornkit J., Pickles R. J. et al. 2008; Human parainfluenza virus type 1 C proteins are nonessential proteins that inhibit the host interferon and apoptotic responses and are required for efficient replication in nonhuman primates. J Virol82:8965–8977 [CrossRef][PubMed]
    [Google Scholar]
  3. Beck E. T., He J., Nelson M. I., Bose M. E., Fan J., Kumar S., Henrickson K. J.. 2012; Genome sequencing and phylogenetic analysis of 39 human parainfluenza virus type 1 strains isolated from 1997–2010. PLoS One7:e46048 [CrossRef]
    [Google Scholar]
  4. Bousse T., Takimoto T., Portner A.. 1995; A single amino acid change enhances the fusion promotion activity of human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Virology209:654–657[PubMed][CrossRef]
    [Google Scholar]
  5. Bousse T., Takimoto T., Matrosovich T., Portner A.. 2001; Two regions of the P protein are required to be active with the L protein for human parainfluenza virus type 1 RNA polymerase activity. Virology283:306–314 [CrossRef][PubMed]
    [Google Scholar]
  6. Bousse T., Matrosovich T., Portner A., Kato A., Nagai Y., Takimoto T.. 2002; The long noncoding region of the human parainfluenza virus type 1 F gene contributes to the read-through transcription at the M-F gene junction. J Virol76:8244–8251 [CrossRef][PubMed]
    [Google Scholar]
  7. Bousse T., Takimoto T.. 2006; Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. J Virol80:9009–9016 [CrossRef][PubMed]
    [Google Scholar]
  8. Chomczynski P., Mackey K.. 1998; Single-step method of total RNA isolated by acid guanidine phenol extraction. In Cell Biology: A Laboratory Handbook , pp.221–224 . Edited by Celis J. E.. New York, USA: Academic Press;
    [Google Scholar]
  9. Curran J., Kolakofsky D.. 1988; Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO J1:245–251
    [Google Scholar]
  10. Darriba D., Taboada G. L., Doallo R., Posada D.. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods9:772 [CrossRef][PubMed]
    [Google Scholar]
  11. EMBL-EBI 2016; Phobius, Prediction of transmembrane topology and signal peptides. http://www.ebi.ac.uk/Tools/pfa/phobius/
  12. Fouillot-Coriou N., Roux L.. 2000; Structure-function analysis of the Sendai virus F and HN cytoplasmic domain: different role for the two proteins in the production of virus particle. Virology270:464–475 [CrossRef][PubMed]
    [Google Scholar]
  13. Fry A. M., Curns A. T., Harbour K., Hutwagner L., Holman R. C., Anderson L. J.. 2006; Seasonal trends of human parainfluenza viral infections: United States, 1990–2004. Clin Infect Dis43:1016–1022 [CrossRef][PubMed]
    [Google Scholar]
  14. Goka E. A., Vallely P. J., Mutton K. J., Klapper P. E.. 2015; Single, dual and multiple respiratory virus infections and risk of hospitalization and mortality. Epidemiol Infect143:37–47 [CrossRef][PubMed]
    [Google Scholar]
  15. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  16. Henrickson K. J., Savatski L. L.. 1997; Antigenic structure, function, and evolution of the hemagglutinin-neuraminidase protein of human parainfluenza virus type 1. J Infect Dis176:867–875[PubMed][CrossRef]
    [Google Scholar]
  17. Henrickson K. J.. 2003; Parainfluenza viruses. Clin Microbiol Rev16:242–264[PubMed][CrossRef]
    [Google Scholar]
  18. Iwane M. K., Edwards K. M., Szilagyi P. G., Walker F. J., Griffin M. R., Weinberg G. A., Coulen C., Poehling K. A., Shone L. P. et al. 2004; Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. Pediatrics113:1758–1764 [CrossRef][PubMed]
    [Google Scholar]
  19. Jin L., Örvell C., Myers R., Rota P. A., Nakayama T., Forcic D., Hiebert J., Brown K. E.. 2015; Genomic diversity of mumps virus and global distribution of the 12 genotypes. Rev Med Virol25:85–101 [CrossRef][PubMed]
    [Google Scholar]
  20. Karron R. A., Collins P.L. Jr. 2013; Parainfluenza viruses. In Fields Virology, 6th edn. pp996–1023 Edited by Knipe D. M., Howley P. M.. Philadelphia, USA: Lippincott Williams & Wilkins;
    [Google Scholar]
  21. Korsun N., Teodosieva A., Angelova S.. 2015; Etiological role of ortho- and paramyxoviruses in acute respiratory tract infections among children aged < 4 years in Bulgaria. Clin Lab61:219–226[PubMed]
    [Google Scholar]
  22. Košutić-Gulija T., Forcic D., Šantak M., Ramljak A., Mateljak-Lukacevic S., Mazuran R.. 2008; Genetic heterogeneity of L-Zagreb mumps virus vaccine strain. Virol J10:79 [CrossRef]
    [Google Scholar]
  23. Lamb R. A., Parks G. D. Jr. 2013; Paramyxoviridae. In Fields Virology, 6 edn. pp.957–995 Edited by Knipe D. M., Howley P. M.. Philadelphia, USA: Lippincott Williams & Wilkins;
    [Google Scholar]
  24. Librado P., Rozas J.. 2009; DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25:1451–1452 [CrossRef][PubMed]
    [Google Scholar]
  25. Ljubin-Sternak S., Mlinaric-Galinovic G., Buntic A. M., Tabain I., Vilibic-Cavlek T., Cepin-Bogovic J., Tesovic G.. 2014; Seasonal occurrence of human metapneumovirus infections in Croatia. Pediatr Infect Dis J33:165–167 [CrossRef][PubMed]
    [Google Scholar]
  26. Martinelli M., Frati E. R., Zappa A., Ebranati E., Bianchi S., Pariani E., Amendola A., Zehender G., Tanzi E.. 2014; Phylogeny and population dynamics of respiratory syncytial virus (RSV) A and B. Virus Res189:293–302 [CrossRef][PubMed]
    [Google Scholar]
  27. Mizuta K., Saitoh M., Kobayashi M., Tsukagoshi H., Aoki Y., Ikeda T., Abiko C., Katsushima N., Itagaki T. et al. 2011; Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan. Virol J8:533 [CrossRef][PubMed]
    [Google Scholar]
  28. Mlinaric-Galinovic G., Forcic D., Ivancic-Jelecki J., Vojnovic G., Bozikov J., Welliver R. C.. 2012; Do circulating RSV-genotypes affect established biennial epidemic periodicity in Zagreb region?. Open J Respir Dis2:91–94[CrossRef]
    [Google Scholar]
  29. Morgan O. W., Chittaganpitch M., Clague B., Chantra S., Sanasuttipun W., Prapasiri P., Naorat S., Laosirithavorn Y., Peret T. C. et al. 2013; Hospitalization due to human parainfluenza virus-associated lower respiratory tract illness in rural Thailand. Influenza Other Respir Viruses7:280–285 [CrossRef][PubMed]
    [Google Scholar]
  30. Moscona A.. 2005; Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease. J Clin Invest115:1688–1698 [CrossRef][PubMed]
    [Google Scholar]
  31. Newman J. T., Surman S. R., Riggs J. M., Hansen C. T., Collins P. L., Murphy B. R., Skiadopoulos M. H.. 2002; Sequence analysis of the Washington/1964 strain of human parainfluenza virus type 1 (HPIV1) and recovery and characterization of wild-type recombinant HPIV1 produced by reverse genetics. Virus Genes24:77–92[PubMed][CrossRef]
    [Google Scholar]
  32. Nor'e S. S., Sam I. C., Mohamad Fakri E. F., Hooi P. S., Nathan A. M., de Bruyne J. A., Jafar F., Hassan A., AbuBakar S., Chan Y. F.. 2014; Phylogenetic analysis of human metapneumovirus among children with acute respiratory infections in Kuala Lumpur, Malaysia. Trop Biomed31:562–566[PubMed]
    [Google Scholar]
  33. Palomo C., García-Barreno B., Peñas C., Melero J. A.. 1991; The G protein of human respiratory syncytial virus: significance of carbohydrate side-chains and the C-terminal end to its antigenicity. J Gen Virol72:669–675 [CrossRef][PubMed]
    [Google Scholar]
  34. Palomo C., Cane P. A., Melero J. A.. 2000; Evaluation of the antibody specificities of human convalescent-phase sera against the attachment (G) protein of human respiratory syncytial virus: influence of strain variation and carbohydrate side chains. J Med Virol60:468–474[PubMed][CrossRef]
    [Google Scholar]
  35. Pancer K. W., Gut W., Abramczuk E., Lipka B., Litwińska B.. 2014; Non-influenza viruses in acute respiratory infections among young children. High prevalence of HMPV during the H1N1V.2009 pandemic in Poland. Przegl Epidemiol68:627–632[PubMed]
    [Google Scholar]
  36. Reed G., Jewett P. H., Thompson J., Tollefson S., Wright P. F.. 1997; Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children < 5 years old. J Infect Dis175:807–813[PubMed][CrossRef]
    [Google Scholar]
  37. Ryan K. W., Murti K. G., Portner A.. 1990; Localization of P protein binding sites on the Sendai virus nucleocapsid. J Gen Virol71:997–1000 [CrossRef][PubMed]
    [Google Scholar]
  38. Shevtsova-Horoz A., Essaidi-Laziosi M., Roux L.. 2015; Sendai virus particle production: a more detailed role of F and HN through, namely, their association with M. Virus Res199:31–41 [CrossRef][PubMed]
    [Google Scholar]
  39. Sommerstein R., Flatz L., Remy M. M., Malinge P., Magistrelli G., Fischer N., Sahin M., Bergthaler A., Igonet S. et al. 2015; Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog11:11 [CrossRef]
    [Google Scholar]
  40. Steentoft C., Vakhrushev S. Y., Joshi H. J., Kong Y., Vester-Christensen M. B., Schjoldager K. T., Lavrsen K., Dabelsteen S., Pedersen N. B. et al. 2013; Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J32:1478–1488 [CrossRef][PubMed]
    [Google Scholar]
  41. Stone R., Takimoto T.. 2013; Critical role of the fusion protein cytoplasmic tail sequence in parainfluenza virus assembly. PLoS One8:e61281
    [Google Scholar]
  42. Suptawiwat O., Boonarkart C., Chakritbudsabong W., Uiprasertkul M., Puthavathana P., Wiriyarat W., Auewarakul P.. 2015; The N-linked glycosylation site at position 158 on the head of hemagglutinin and the virulence of H5N1 avian influenza virus in mice. Arch Virol160:409–415 [CrossRef][PubMed]
    [Google Scholar]
  43. Takaguchi M., Takahashi T., Hosokawa C., Ueyama H., Fukushima K., Hayakawa T., Itoh K., Ikeda K., Suzuki T.. 2011; A single amino acid mutation at position 170 of human parainfluenza virus type 1 fusion glycoprotein induces obvious syncytium formation and caspase-3-dependent cell death. J Biochem149:191–202 [CrossRef][PubMed]
    [Google Scholar]
  44. Takahashi T., Takano M., Kurebayashi Y., Agarikuchi T., Suzuki C., Fukushima K., Takahashi S., Otsubo T., Ikeda K. et al. 2015; Rapid fluorescent detection assay for human parainfluenza viruses. Biol Pharm Bull38:1214–1219 [CrossRef][PubMed]
    [Google Scholar]
  45. Takimoto T., Bousse T., Coronel E. C., Scroggs R. A., Portner A.. 1998; Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol72:9747–9754[PubMed]
    [Google Scholar]
  46. Villaran M. V., García J., Gomez J., Arango A. E., Gonzales M., Chicaiza W., Alemán W., Lorenzana de Rivera I., Sanchez F, Rivera Lorenzana de. I et al. 2014; Human parainfluenza virus in patients with influenza-like illness from Central and South America during 2006–2010. Influenza Other Respir Viruses8:217–227 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang F., Zhao L. Q., Zhu R. N., Deng J., Sun Y., Ding Y. X., Tian R., Qian Y.. 2015; Parainfluenza virus types 1, 2, and 3 in pediatric patients with acute respiratory infections in Beijing during 2004 to 2012. Chin Med J128:2726–2730 [CrossRef][PubMed]
    [Google Scholar]
  48. WHO 2012; Measles virus nomenclature update. Wkly Epidemiol Rec89:73–80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000297
Loading
/content/journal/jmm/10.1099/jmm.0.000297
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error