1887

Abstract

Surgical site infection (SSI) remains one of the most important causes of healthcare-associated infections, accounting for ~17 % of all hospital-acquired infections. Although short-term perioperative treatment with high fraction of inspired oxygen (FiO) has shown clinical benefits in reducing SSI in colorectal resection surgeries, the true clinical benefits of FiO therapy in reducing SSI remain unclear because randomized controlled trials on this topic have yielded disparate results and inconsistent conclusions. To date, no animal study has been conducted to determine the efficacy of short-term perioperative treatments with high (FiO>60 %) versus low (FiO<40 %) oxygen in reducing SSI. In this report, we designed a rat model for muscle surgery to compare the effectiveness of short-term perioperative treatments with high (FiO=80 %) versus a standard low (FiO=30 %) oxygen in reducing SSI with – one of the most prevalent Gram-negative pathogens, responsible for nosocomial SSIs. Our data demonstrate that 5 h perioperative treatment with 80 % FiO is significantly more effective in reducing SSI with compared to 30 % FiO treatment. We further show that whilst 80 % FiO treatment does not affect neutrophil infiltration into infected muscles, neutrophils in the 80 % FiO-treated and infected animal group are significantly more activated than neutrophils in the 30 % FiO-treated and infected animal group, suggesting that high oxygen perioperative treatment reduces SSI with by enhancing neutrophil activation in infected wounds.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000295
2016-08-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/738.html?itemId=/content/journal/jmm/10.1099/jmm.0.000295&mimeType=html&fmt=ahah

References

  1. Al-Niaimi A., Safdar N.. 2009; Supplemental perioperative oxygen for reducing surgical site infection: a meta-analysis. J Eval Clin Pract15:360–365 [CrossRef][PubMed]
    [Google Scholar]
  2. Allen D. B., Maguire J. J., Mahdavian M., Wicke C., Marcocci L., Scheuenstuhl H., Chang M., Le A. X., Hopf H. W., Hunt T. K.. 1997; Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg132:991–996 [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson D. J.. 2011; Surgical site infections. Infect Dis Clin North Am25:135–153 [CrossRef][PubMed]
    [Google Scholar]
  4. Arsalan A., Alam M., Naqvi S. B. S., Ahmad I., Anwar Z.. 2014; Oxygen as a facilitator in the reduction of surgical site infections. Sri Lanka J Surg31: [CrossRef]
    [Google Scholar]
  5. Awad S. S.. 2012; Adherence to surgical care improvement project measures and post-operative surgical site infections. Surg Infect13:234–237 [CrossRef][PubMed]
    [Google Scholar]
  6. Belda F. J., Aguilera L., García de la Asunción J., Alberti J., Vicente R., Ferrándiz L., Rodríguez R., Company R., Sessler D. I. et al. 2005; Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA294:2035–2042 [CrossRef][PubMed]
    [Google Scholar]
  7. Belda F. J., Catalá-López F., Greif R., Canet J.. 2014; Benefits and risks of intraoperative high inspired oxygen therapy: firm conclusions are still far off. Anesthesiology120:1051–1052 [CrossRef][PubMed]
    [Google Scholar]
  8. Björnsdottir H., Welin A., Michaëlsson E., Osla V., Berg S., Christenson K., Sundqvist M., Dahlgren C., Karlsson A., Bylund J.. 2015; Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med89:1024–1035 [CrossRef][PubMed]
    [Google Scholar]
  9. Brar M. S., Brar S. S., Dixon E.. 2011; Perioperative supplemental oxygen in colorectal patients: a meta-analysis. J Surg Res166:227–235 [CrossRef][PubMed]
    [Google Scholar]
  10. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A.. 2004; Neutrophil extracellular traps kill bacteria. Science303:1532–1535 [CrossRef][PubMed]
    [Google Scholar]
  11. Chura J. C., Boyd A., Argenta P. A.. 2007; Surgical site infections and supplemental perioperative oxygen in colorectal surgery patients: a systematic review. Surg Infect8:455–461 [CrossRef][PubMed]
    [Google Scholar]
  12. Dovi J., Szpaderska A. M., DiPietro L. A.. 2004; Neutrophil function in the healing wound: adding insult to injury?. Thromb Haemost92:275–280 [CrossRef][PubMed]
    [Google Scholar]
  13. Garrity-Ryan L., Shafikhani S., Balachandran P., Nguyen L., Oza J., Jakobsen T., Sargent J., Fang X., Cordwell S. et al. 2004; The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun72:546–558 [CrossRef][PubMed]
    [Google Scholar]
  14. Giacometti A., Cirioni O., Schimizzi A. M., Del Prete M. S., Barchiesi F., D'Errico M. M., Petrelli E., Scalise G.. 2000; Epidemiology and microbiology of surgical wound infections. J Clin Microbiol38:918–922[PubMed]
    [Google Scholar]
  15. Gjødsbøl K., Christensen J. J., Karlsmark T., Jørgensen B., Klein B. M., Krogfelt K. A.. 2006; Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J3:225–231 [CrossRef][PubMed]
    [Google Scholar]
  16. Goldufsky J., Wood S., Hajihossainlou B., Rehman T., Majdobeh O., Kaufman H. L., Ruby C. E., Shafikhani S. H.. 2015a; Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J Med Microbiol64:164–173 [CrossRef]
    [Google Scholar]
  17. Goldufsky J., Wood S. J., Jayaraman V., Majdobeh O., Chen L., Qin S., Zhang C., DiPietro L. A., Shafikhani S. H.. 2015b; Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen23:557–564 [CrossRef]
    [Google Scholar]
  18. Greif R., Laciny S., Rapf B., Hickle R. S., Sessler D. I.. 1999; Supplemental oxygen reduces the incidence of postoperative nausea and vomiting. Anesthesiology91:1246–1252 [CrossRef][PubMed]
    [Google Scholar]
  19. Greif R., Akça O., Horn E. P., Kurz A., Sessler D. I.. Outcomes Research Group 2000; Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med342:161–167 [CrossRef][PubMed]
    [Google Scholar]
  20. Halbert A. R., Stacey M. C., Rohr J. B., Jopp-McKay A.. 1992; The effect of bacterial colonization on venous ulcer healing. Australas J Dermatol33:75–80[PubMed][CrossRef]
    [Google Scholar]
  21. Hopf H. W., Hunt T. K., West J. M., Blomquist P., Goodson W. H., Jensen J. A., Jonsson K., Paty P. B., Rabkin J. M. et al. 1997; Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg132:997–1004 discussion 1005 [CrossRef][PubMed]
    [Google Scholar]
  22. Hovaguimian F., Lysakowski C., Elia N., Tramèr M. R.. 2013; Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials. Anesthesiology119:303–316 [CrossRef][PubMed]
    [Google Scholar]
  23. Hunt T. K., Linsey M., Grislis H., Sonne M., Jawetz E.. 1975; The effect of differing ambient oxygen tensions on wound infection. Ann Surg181:35–39 [CrossRef][PubMed]
    [Google Scholar]
  24. Klebanoff S. J., Kettle A. J., Rosen H., Winterbourn C. C., Nauseef W. M.. 2013; Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol93:185–198 [CrossRef][PubMed]
    [Google Scholar]
  25. Klevens R. M., Edwards J. R., Richards C. L., Horan T. C., Gaynes R. P., Pollock D. A., Cardo D. M.. 2007; Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep122:160–166[PubMed]
    [Google Scholar]
  26. Knighton D. R., Halliday B., Hunt T. K.. 1984; Oxygen as an antibiotic. Arch Surg119:199–204 [CrossRef]
    [Google Scholar]
  27. Knighton D. R., Halliday B., Hunt T. K.. 1986; Oxygen as an antibiotic. Arch Surg121:191–195 [CrossRef]
    [Google Scholar]
  28. Kroin J. S., Buvanendran A., Li J., Moric M., Im H. J., Tuman K. J., Shafikhani S. H., Moric H. J., Im K. J. T.. 2015; Short-term glycemic control is effective in reducing surgical site infection in diabetic rats. Anesth Analg120:1289–1296 [CrossRef][PubMed]
    [Google Scholar]
  29. Lin W. Y., Tsai S. C., Hung G. U., Kwan P. C., Lin C. F., Yuan C. S., Lin Y. C.. 2005; Comparison of animal models with soft tissue infection by different bacilli. J Vet Med Sci67:43–49 [CrossRef][PubMed]
    [Google Scholar]
  30. Madsen S. M., Westh H., Danielsen L., Rosdahl V. T.. 1996; Bacterial colonization and healing of venous leg ulcers. APMIS104:895–899 [CrossRef][PubMed]
    [Google Scholar]
  31. Magill S. S., Hellinger W., Cohen J., Kay R., Bailey C., Boland B., Carey D., de Guzman J., Dominguez K. et al. 2012; Prevalence of healthcare-associated infections in acute care hospitals in Jacksonville, Florida. Infect Control Hosp Epidemiol33:283–291 [CrossRef][PubMed]
    [Google Scholar]
  32. Malik A., Mohammad Z., Ahmad J.. 2013; The diabetic foot infections: biofilms and antimicrobial resistance. Diabetes Metab Syndr7:101–107 [CrossRef][PubMed]
    [Google Scholar]
  33. Martin P.. 1997; Wound healing – aiming for perfect skin regeneration. Science276:75–81 [CrossRef][PubMed]
    [Google Scholar]
  34. Nauseef W. M., Borregaard N.. 2014; Neutrophils at work. Nat Immunol15:602–611 [CrossRef][PubMed]
    [Google Scholar]
  35. Ohman D. E., Sadoff J. C., Iglewski B. H.. 1980; Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect Immun28:899–908[PubMed]
    [Google Scholar]
  36. Qadan M., Akça O., Mahid S. S., Polk H. C.. 2009; Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg144:359–366 discussion 366–357 [CrossRef][PubMed]
    [Google Scholar]
  37. Ramakant P., Verma A. K., Misra R., Prasad K. N., Chand G., Mishra A., Agarwal G., Agarwal A., Mishra S. K.. 2011; Changing microbiological profile of pathogenic bacteria in diabetic foot infections: time for a rethink on which empirical therapy to choose?. Diabetologia54:58–64 [CrossRef][PubMed]
    [Google Scholar]
  38. Scott R.. 2009; The Direct Medical Costs of Healthcare-Associated Infections in US Hospitals and the Benefits of Prevention Atlanta, GA: Centers for Disease Control and Prevention;
    [Google Scholar]
  39. Shafikhani S. H., Engel J.. 2006; Pseudomonas aeruginosa type III-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps. Proc Natl Acad Sci U S A103:15605–15610 [CrossRef][PubMed]
    [Google Scholar]
  40. Shafikhani S. H., Morales C., Engel J.. 2008; The Pseudomonas aeruginosa type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells. Cell Microbiol10:994–1007 [CrossRef][PubMed]
    [Google Scholar]
  41. Sjöberg F., Singer M.. 2013; The medical use of oxygen: a time for critical reappraisal. J Intern Med274:505–528 [CrossRef][PubMed]
    [Google Scholar]
  42. Togioka B., Galvagno S., Sumida S., Murphy J., Ouanes J. P., Wu C.. 2012; The role of perioperative high inspired oxygen therapy in reducing surgical site infection: a meta-analysis. Anesth Analg114:334–342 [CrossRef][PubMed]
    [Google Scholar]
  43. Tsai W. C., Strieter R. M., Mehrad B., Newstead M. W., Zeng X., Standiford T. J.. 2000; CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun68:4289–4296 [CrossRef][PubMed]
    [Google Scholar]
  44. Winstanley C., Kaye S. B., Neal T. J., Chilton H. J., Miksch S., Hart C. A.. Microbiology Ophthalmic Group 2005; Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol54:519–526 [CrossRef][PubMed]
    [Google Scholar]
  45. Winterbourn C. C., Kettle A. J., Hampton M. B.. 2016; Reactive oxygen species and neutrophil function. Annu Rev Biochem85:765–792 [CrossRef][PubMed]
    [Google Scholar]
  46. Wood S., Pithadia R., Rehman T., Zhang L., Plichta J., Radek K. A., Forsyth C., Keshavarzian A., Shafikhani S. H.. 2013; Chronic alcohol exposure renders epithelial cells vulnerable to bacterial infection. PLoS One8:e54646 [CrossRef][PubMed]
    [Google Scholar]
  47. Wood S., Jayaraman V., Huelsmann E. J., Bonish B., Burgad D., Sivaramakrishnan G., Qin S., DiPietro L. A., Zloza A. et al. 2014; Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One9:e91574 [CrossRef][PubMed]
    [Google Scholar]
  48. Wood S., Goldufsky J., Shafikhani S. H.. 2015a; Pseudomonas aeruginosa ExoT induces atypical anoikis apoptosis in target host cells by transforming crk adaptor protein into a cytotoxin. PLoS Pathog11:e1004934 [CrossRef]
    [Google Scholar]
  49. Wood S. J., Goldufsky J. W., Bello D., Masood S., Shafikhani S. H.. 2015b; Pseudomonas aeruginosa ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GAP domain activity. J Biol Chem27:29063–29073[CrossRef]
    [Google Scholar]
  50. Zhao G., Hochwalt P. C., Usui M. L., Underwood R. A., Singh P. K., James G. A., Stewart P. S., Fleckman P., Olerud J. E.. 2010; Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen18:467–477 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000295
Loading
/content/journal/jmm/10.1099/jmm.0.000295
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error