1887

Abstract

Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25–0.5 µg ml and 0.5–8 µg ml against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml; n=8) and S. epidermidis (MIC: ≥64 µg ml; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000293
2016-08-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/745.html?itemId=/content/journal/jmm/10.1099/jmm.0.000293&mimeType=html&fmt=ahah

References

  1. Beylot C. , Auffret N. , Poli F. , Claudel J. P. , Leccia M. T. , Del Giudice P. , Dreno B. . ( 2014;). Propionibacterium acnes: an update on its role in the pathogenesis of acne. . J Eur Acad Dermatol Venereol 28: 271–278. [CrossRef] [PubMed]
    [Google Scholar]
  2. CLSI ( 2008;). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. . Approved standard M07–A8.
  3. CLSI ( 2012a;). Performance Standards for Antimicrobial Susceptibility Testing. . Approved Standard M100–S22.
  4. CLSI ( 2012b;). Methods of antimicrobial susceptibility testing for anaerobic bacteria. . Approved standard M11–A8.
  5. Contassot E. , French L. E. . ( 2014;). New insights into acne pathogenesis: P ropionibacterium acnes activates the inflammasome. . J Invest Dermatol 134: 310–313. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ferrero L. , Cameron B. , Crouzet J. . ( 1995;). Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus . . Antimicrob Agents Chemother 39: 1554–1558. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gollnick H. . ( 2003;). Current concepts of the pathogenesis of acne: implications for drug treatment. . Drugs 63: 1579–1596.[PubMed] [CrossRef]
    [Google Scholar]
  8. Horii T. , Suzuki Y. , Takeshita A. , Maekawa M. . ( 2007;). Molecular characterization of 8-methoxyfluoroquinolone resistance in a clinical isolate of methicillin-resistant Staphylococcus aureus . . Chemotherapy 53: 104–109. [CrossRef] [PubMed]
    [Google Scholar]
  9. Iinuma K. , Sato T. , Akimoto N. , Noguchi N. , Sasatsu M. , Nishijima S. , Kurokawa I. , Ito A. . ( 2009;). Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro . . J Invest Dermatol 129: 2113–2119. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kawashima M. , Honjo T. , Kato R. . ( 2015a;). A open label, phase III study of ozenoxacin lotion in patients with superficial infection of the skin. . J Clin Therap Med 31: 279–287.
    [Google Scholar]
  11. Kawashima M. , Igarashi A. , Hayashi N. , Tsunemi Y. , Fujikawa A. , Kato R. , Watanabe S. . ( 2015b;). A comparative phase III study of ozenoxacin lotion in patients with acne vulgaris. . J Clin Therap Med 31: 155–171.
    [Google Scholar]
  12. López Y. , Tato M. , Espinal P. , Garcia-Alonso F. , Gargallo-Viola D. , Cantón R. , Vila J. . ( 2013;). In vitro activity of ozenoxacin against quinolone-susceptible and quinolone-resistant gram-positive bacteria. . Antimicrob Agents Chemother 57: 6389–6392. [CrossRef] [PubMed]
    [Google Scholar]
  13. López Y. , Tato M. , Espinal P. , Garcia-Alonso F. , Gargallo-Viola D. , Cantón R. , Vila J. . ( 2015;). In vitro selection of mutants resistant to ozenoxacin compared with levofloxacin and ciprofloxacin in Gram-positive cocci. . J Antimicrob Chemother 70: 57–61. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nakase K. , Nakaminami H. , Takenaka Y. , Hayashi N. , Kawashima M. , Noguchi N. . ( 2014;). Relationship between the severity of acne vulgaris and antimicrobial. . J Med Microbiol 63: 721–728.[CrossRef]
    [Google Scholar]
  15. Nast A. , Dréno B. , Bettoli V. , Degitz K. , Erdmann R. , Finlay A. Y. , Ganceviciene R. , Haedersdal M. , Layton A et al. ( 2012;). European evidence-based (S3) guidelines for the treatment of acne. . J Eur Acad Dermatol Venereol 26: Suppl 1 1–29. [CrossRef] [PubMed]
    [Google Scholar]
  16. Nishijima S. , Kurokawa I. , Katoh N. , Watanabe K. . ( 2000;). The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. . J Dermatol 27: 318–323. [CrossRef] [PubMed]
    [Google Scholar]
  17. Patel M. , Bowe W. P. , Heughebaert C. , Shalita A. R. . ( 2010;). The development of antimicrobial resistance due to the antibiotic treatment of acne vulgaris: a review. . J Drugs Dermatol 9: 655–664.[PubMed]
    [Google Scholar]
  18. Strauss J. S. , Krowchuk D. P. , Leyden J. J. , Lucky A. W. , Shalita A. R. , Siegfried E. C. , Thiboutot D. M. , Van Voorhees A. S. , Beutner K. A. et al. ( 2007;). Guidelines of care for acne vulgaris management. . J Am Acad Dermatol 56: 651–663. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tato M. , López Y. , Morosini M. I. , Moreno-Bofarull A. , Garcia-Alonso F. , Gargallo-Viola D. , Vila J. , Cantón R. . ( 2014;). Characterization of variables that may influence ozenoxacin in susceptibility testing, including MIC and MBC values. . Diagn Microbiol Infect Dis 78: 263–267. [CrossRef] [PubMed]
    [Google Scholar]
  20. Thiboutot D. , Gollnick H. , Bettoli V. , Dréno B. , Kang S. , Leyden J. J. , Shalita A. R. , Lozada V. T. , Berson D. et al. ( 2009;). New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. . J Am Acad Dermatol 60: S1–S50. [CrossRef] [PubMed]
    [Google Scholar]
  21. Williams H. C. , Dellavalle R. P. , Garner S. . ( 2012;). Acne vulgaris. . Lancet 379: 361–372. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yamakawa T. , Mitsuyama J. , Hayashi K. . ( 2002;). In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone. . J Antimicrob Chemother 49: 455–465. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000293
Loading
/content/journal/jmm/10.1099/jmm.0.000293
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error