1887

Abstract

Carbapenems are considered the last-resort antibiotics to treat infections caused by multidrug-resistant Gram-negative bacilli. The Klebsiella pneumoniae carbapenemase (KPC) enzyme hydrolyses β-lactam antibiotics including the carbapenems. KPC has been detected worldwide in Enterobacteriaceae and Pseudomonas aeruginosa isolates associated with transposon Tn4401 commonly located in plasmids. Acinetobacter baumannii has become an important multidrug-resistant nosocomial pathogen. KPC-producing A. baumannii has been reported to date only in Puerto Rico. The objective of this study was to determine the whole genomic sequence of a KPC-producing A. baumannii in order to (i) define its allelic diversity, (ii) identify the location and genetic environment of the bla KPC and (iii) detect additional mechanisms of antimicrobial resistance. Next-generation sequencing, Southern blot, PFGE, multilocus sequence typing and bioinformatics analysis were performed. The organism was assigned to the international ST2 clone. The bla KPC-2 was identified on a novel truncated version of Tn4401e (tentatively named Tn4401h), located in the chromosome within an IncA/C plasmid fragment derived from an Enterobacteriaceae, probably owing to insertion sequence IS26. A chromosomally located truncated Tn1 transposon harbouring a bla TEM-1 was found in a novel genetic environment within an antimicrobial resistance cluster. Additional resistance mechanisms included efflux pumps, non-β-lactam antibiotic inactivating enzymes within and outside a resistance island, two class 1 integrons, In439 and the novel In1252, as well as mutations in the topoisomerase and DNA gyrase genes which confer resistance to quinolones. The presence of the bla KPC in an already globally disseminated A. baumannii ST2 presents a serious threat of further dissemination.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000289
2016-08-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/784.html?itemId=/content/journal/jmm/10.1099/jmm.0.000289&mimeType=html&fmt=ahah

References

  1. Ardebili A., Lari A. R., Talebi M..( 2014;). Correlation of ciprofloxacin resistance with the AdeABC efflux system in Acinetobacter baumannii clinical isolates. . Ann Lab Med 34: 433–438. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bakour S., Alsharapy S. A., Touati A., Rolain J. M..( 2014;). Characterization of Acinetobacter baumannii clinical isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase armA genes in Yemen. . Microb Drug Resist 20: 604–609. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrios H., Garza-Ramos U., Ochoa-Sanchez L. E., Reyna-Flores F., Rojas-Moreno T., Morfin-Otero R., Rodriguez-Noriega E., Garza-Gonzalez E., Gonzalez G. et al.( 2012;). A plasmid-encoded class 1 integron contains GES-type extended-spectrum β-lactamases in Enterobacteriaceae clinical isolates in Mexico. . Antimicrob Agents Chemother 56: 4032–4034. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barton B. M., Harding G. P., Zuccarelli A. J..( 1995;). A general method for detecting and sizing large plasmids. . Anal Biochem 226: 235–240. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bertini A., Poirel L., Mugnier P. D., Villa L., Nordmann P., Carattoli A..( 2010;). Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. . Antimicrob Agents Chemother 54: 4168–4177. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J..( 2005;). Identification of plasmids by PCR-based replicon typing. . J Microbiol Methods 63: 219–228. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen L., Chavda K. D., Fraimow H. S., Mediavilla J. R., Melano R. G., Jacobs M. R., Bonomo R. A., Kreiswirth B. N..( 2013;). Complete nucleotide sequences of blaKPC-4-and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. . Antimicrob Agents Chemother 57: 269–276. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen L., Chavda K. D., DeLeo F. R., Bryant K. A., Jacobs M. R., Bonomo R. A., Kreiswirth B. N..( 2015;). Genome sequence of a Klebsiella pneumoniae sequence type 258 isolate with prophage-encoded K. pneumoniae carbapenemase. . Genome Announc 3: e00659-15. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chmelnitsky I., Shklyar M., Leavitt A., Sadovsky E., Navon-Venezia S., Ben Dalak M., Edgar R., Carmeli Y..( 2014;). Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics. . Diagn Microbiol Infect Dis 79: 255–260. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cuzon G., Naas T., Villegas M. V., Correa A., Quinn J. P., Nordmann P..( 2011;). Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. . Antimicrob Agents Chemother 55: 5350–5353. [CrossRef] [PubMed]
    [Google Scholar]
  11. Darling A. C., Mau B., Blattner F. R., Perna N. T..( 2004;). Mauve: multiple alignment of conserved genomic sequence with rearrangements. . Genome Res 14: 1394–1403. [CrossRef] [PubMed]
    [Google Scholar]
  12. Doublet B., Boyd D., Douard G., Praud K., Cloeckaert A., Mulvey M. R..( 2012;). Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969. . J Antimicrob Chemother 67: 2354–2360. [CrossRef] [PubMed]
    [Google Scholar]
  13. Durmaz R., Otlu B., Koksal F., Hosoglu S., Ozturk R., Ersoy Y., Aktas E., Gursoy N. C., Caliskan A..( 2009;). The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. . Jpn J Infect Dis 62: 372–377.[PubMed]
    [Google Scholar]
  14. Fricke W. F., Welch T. J., McDermott P. F., Mammel M. K., LeClerc J. E., White D. G., Cebula T. A., Ravel J..( 2009;). Comparative genomics of the IncA/C multidrug resistance plasmid family. . J Bacteriol 191: 4750–4757. [CrossRef] [PubMed]
    [Google Scholar]
  15. Getchell-White S. I., Donowitz L. G., Gröschel D. H..( 1989;). The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. . Infect Control Hosp Epidemiol 10: 402–407. [CrossRef] [PubMed]
    [Google Scholar]
  16. Giannouli M., Cuccurullo S., Crivaro V., Di Popolo A., Bernardo M., Tomasone F., Amato G., Brisse S., Triassi M. et al.( 2010;). Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. . J Clin Microbiol 48: 1223–1230. [CrossRef] [PubMed]
    [Google Scholar]
  17. Goering R. V..( 2010;). Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. . Infect Genet Evol 10: 866–875. [CrossRef] [PubMed]
    [Google Scholar]
  18. He S., Hickman A. B., Varani A. M., Siguier P., Chandler M., Dekker J. P., Dyda F..( 2015;). Insertion sequence IS 26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. . MBio 6: 1–14. [CrossRef]
    [Google Scholar]
  19. Héritier C., Poirel L., Nordmann P..( 2006;). Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. . Clin Microbiol Infect 12: 123–130. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hornsey M., Loman N., Wareham D. W., Ellington M. J., Pallen M. J., Turton J. F., Underwood A., Gaulton T., Thomas C. P. et al.( 2011;). Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. . J Antimicrob Chemother 66: 1499–1503. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J..( 2010;). Prodigal: prokaryotic gene recognition and translation initiation site identification. . BMC Bioinformatics 11: 119. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jiang Y., Yu D., Wei Z., Shen P., Zhou Z., Yu Y..( 2010;). Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying blaKPC-2, blaDHA-1, qnrB4, and armA. . Antimicrob Agents Chemother 54: 3967–3969. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lean S. S., Yeo C. C., Suhaili Z., Thong K. L..( 2015;). Whole-genome analysis of an extensively drug-resistant clinical isolate of Acinetobacter baumannii AC12: insights into the mechanisms of resistance of an ST195 clone from Malaysia. . Int J Antimicrob Agents 45: 178–182. [CrossRef] [PubMed]
    [Google Scholar]
  24. Liu S. L., Hessel A., Sanderson K. E..( 1993;). Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. . Proc Natl Acad Sci U S A 90: 6874–6878. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lockhart S. R., Abramson M. A., Beekmann S. E., Gallagher G., Riedel S., Diekema D. J., Quinn J. P., Doern G. V..( 2007;). Antimicrobial resistance among gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. . J Clin Microbiol 45: 3352–3359. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mammeri H., Poirel L., Mangeney N., Nordmann P., Central L., Chenevier A..( 2003;). Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams. . Antimicrob Agents Chemother 47: 1536–1542. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mammina C., Bonura C., Aleo A., Calà C., Caputo G., Cataldo M. C., Benedetto A. D., Distefano S., Fasciana T. et al.( 2011;). Characterization of Acinetobacter baumannii from intensive care units and home care patients in Palermo, Italy. . Clin Microbiol Infect 17: E12E15. [CrossRef] [PubMed]
    [Google Scholar]
  28. Manchanda V., Sanchaita S., Singh N..( 2010;). Multidrug resistant acinetobacter. . J Glob Infect Dis 2: 291. [CrossRef] [PubMed]
    [Google Scholar]
  29. Martínez T., Vazquez G. J., Aquino E. E., Goering R. V., Robledo I. E..( 2012;). Two novel class I integron arrays containing IMP-18 metallo-β-lactamase gene in Pseudomonas aeruginosa clinical isolates from Puerto Rico. . Antimicrob Agents Chemother 56: 2119–2121. [CrossRef] [PubMed]
    [Google Scholar]
  30. Martínez T., Vázquez G. J., Aquino E. E., Martínez I., Robledo I. E..( 2014;). ISEcp1-mediated transposition of blaKPC into the chromosome of a clinical isolate of Acinetobacter baumannii from Puerto Rico. . J Med Microbiol 63: 1644–1648. [CrossRef] [PubMed]
    [Google Scholar]
  31. Martínez T., Ropelewski A. J., González-Mendez R., Vázquez G. J., Robledo I. E..( 2015;). Draft genome sequence of Klebsiella pneumoniae carbapenemase-producing Acinetobacter baumannii strain M3AC9-7, isolated from Puerto Rico. . Genome Announc 3: e00274-15. [CrossRef] [PubMed]
    [Google Scholar]
  32. Moland E. S., Hanson N. D., Black J. A., Hossain A., Song W., Thomson K. S..( 2006;). Prevalence of newer beta-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. . J Clin Microbiol 44: 3318–3324. [CrossRef] [PubMed]
    [Google Scholar]
  33. Moura A., Soares M., Pereira C., Leitão N., Henriques I., Correia A..( 2009;). INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. . Bioinformatics 25: 1096–1098. [CrossRef] [PubMed]
    [Google Scholar]
  34. Naas T., Cuzon G., Villegas M. V., Lartigue M. F., Quinn J. P., Nordmann P..( 2008;). Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. . Antimicrob Agents Chemother 52: 1257–1263. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nigro S. J., Farrugia D. N., Paulsen I. T., Hall R. M..( 2013;). A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. . J Antimicrob Chemother 68: 554–557. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nordmann P., Cuzon G., Naas T..( 2009;). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. . Lancet Infect Dis 9: 228–236. [CrossRef] [PubMed]
    [Google Scholar]
  37. Pecora N. D., Li N., Allard M., Li C., Albano E., Delaney M., Dubois A., Onderdonk A. B., Bry L..( 2015;). Genomically informed surveillance for carbapenem-resistant Enterobacteriaceae in a health care system. . MBio 6: e0103001015. [CrossRef] [PubMed]
    [Google Scholar]
  38. Robledo I. E., Aquino E. E., Santé M. I., Santana J. L., Otero D. M., León C. F., Vázquez G. J..( 2010;). Detection of KPC in Acinetobacter spp. in Puerto Rico. . Antimicrob Agents Chemother 54: 1354–1357. [CrossRef] [PubMed]
    [Google Scholar]
  39. Shen P., Wei Z., Jiang Y., Du X., Ji S., Yu Y., Li L., Yu N..( 2009;). Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. . Antimicrob Agents Chemother 53: 4333–4338. [CrossRef] [PubMed]
    [Google Scholar]
  40. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M..( 2006;). ISfinder: the reference centre for bacterial insertion sequences. . Nucleic Acids Res 34: D32–D36. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sun C., Hao J., Dou M., Gong Y..( 2015;). Mutant prevention concentrations of levofloxacin, pazufloxacin and ciprofloxacin for A. baumannii and mutations in gyrA and parC genes. . J Antibiot 68: 313–317. [CrossRef] [PubMed]
    [Google Scholar]
  42. Towns J., Cockerill T., Dahan M., Foster I., Gaither K., Grimshaw A., Hazlewood V., Lathrop S., Lifka D. et al.( 2014;). XSEDE: accelerating scientific discovery. . Comput Sci Eng 16: 62–74. [CrossRef]
    [Google Scholar]
  43. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L..( 2006;). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. . FEMS Microbiol Lett 258: 72–77. [CrossRef] [PubMed]
    [Google Scholar]
  44. Viedma E., Juan C., Acosta J., Zamorano L., Otero J. R., Sanz F., Chaves F., Oliver A..( 2009;). Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. . Antimicrob Agents Chemother 53: 4930–4933. [CrossRef] [PubMed]
    [Google Scholar]
  45. Villegas M. V., Lolans K., Correa A., Kattan J. N., Lopez J. A., Quinn J. P..Colombian Nosocomial Resistance Study Group( 2007;). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. . Antimicrob Agents Chemother 51: 1553–1555. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wolter D. J., Khalaf N., Robledo I. E., Vázquez G. J., Santé M. I., Aquino E. E., Goering R. V., Hanson N. D..( 2009;). Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican medical center hospitals: dissemination of KPC and IMP-18 beta-lactamases. . Antimicrob Agents Chemother 53: 1660–1664. [CrossRef] [PubMed]
    [Google Scholar]
  47. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M..( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. . Int J Antimicrob Agents 27: 351–353. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wright M. S., Haft D. H., Harkins D. M., Perez F., Hujer K. M., Bajaksouzian S., Benard M. F., Jacobs M. R., Bonomo R. A., Adams M. D..( 2014;). New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. . MBio 5: e0096313. [CrossRef] [PubMed]
    [Google Scholar]
  49. Yigit H., Queenan A. M., Anderson G. J., Domenech-Sanchez A., Biddle J. W., Steward C. D., Alberti S., Bush K., Tenover F. C..( 2001;). Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. . Antimicrob Agents Chemother 45: 1151–1161. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F. M., Larsen M. V..( 2012;). Identification of acquired antimicrobial resistance genes. . J Antimicrob Chemother 67: 2640–2644. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zarrilli R., Pournaras S., Giannouli M., Tsakris A..( 2013;). Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. . Int J Antimicrob Agents 41: 11–19. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zhang G. Q., Yao Y. H., Yu X. L., Niu J. J..( 2014;). A survey of five broad-host-range plasmids in gram-negative bacilli isolated from patients. . Plasmid 74: 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S..( 2011;). PHAST: a fast phage search tool. . Nucleic Acids Res 39: W347–W352. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000289
Loading
/content/journal/jmm/10.1099/jmm.0.000289
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error