1887

Abstract

Using a sequence-based approach we previously identified an IncI1 CTX-M-1 plasmid, pIFM3791, on a single pig farm in the UK that was harboured by Klebsiella pneumoniae, Escherichia coli and Salmonella enterica serotype 4,5,12:i:-. To test the hypothesis that the plasmid had spread rapidly into these differing host bacteria we wished to assess whether the plasmid conferred a fitness advantage. To do this an IncI1 curing vector was constructed and used to displace the IncI1 CTX-M-1 plasmids from K. pneumoniae strain B3791 and several other unrelated IncI1-harbouring strains indicating the potential wider application of the curing vector. The IncI1 CTX-M-1 plasmid was reintroduced by conjugation into the cured K. pneumoniae strain and also a naturally IncI1 plasmid free S. enterica serotype 4,5,12:i:-, S348/11. Original, cured and complemented strains were tested for metabolic competence using Biolog technology and in competitive growth, association to mammalian cells and biofilm formation experiments. The plasmid-cured K. pneumoniae strain grew more rapidly than either the original plasmid-carrying strain or plasmid-complemented strains in competition experiments. Additionally, the plasmid-cured strain was significantly better at respiring with l-sorbose as a carbon source and putrescine, γ-amino-n-butyric acid, l-alanine and l-proline as nitrogen sources. By contrast, no differences in phenotype were found when comparing plasmid-harbouring and plasmid-free S. enterica S348/11. In conclusion, the IncI1 curing vector successfully displaced multiple IncI plasmids. The IncI1 CTX-M1 plasmid conferred a growth disadvantage upon K. pneumoniae, possibly by imposing a metabolic burden, the mechanism of which remains to be determined.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000271
2016-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/7/611.html?itemId=/content/journal/jmm/10.1099/jmm.0.000271&mimeType=html&fmt=ahah

References

  1. Batchelor M., Hopkins K., Threlfall E. J., Clifton-Hadley F. A., Stallwood A. D., Davies R. H., Liebana E..( 2005;). blaCTX-M Genes in clinical salmonella isolates recovered from humans in England and Wales from 1992 to 2003. . Antimicrobial Agents and Chemotherapy 49: 1319–1322. [CrossRef]
    [Google Scholar]
  2. Bouma J. E., Lenski R. E..( 1988;). Evolution of a bacteria/plasmid association. . Nature 335: 351–352. [CrossRef] [PubMed]
    [Google Scholar]
  3. Couturier M., Bex F., Bergquist P. L., Maas W. K..( 1988;). Identification and classification of bacterial plasmids. . Microbiol Rev 52: 375–395.[PubMed]
    [Google Scholar]
  4. de Been M., Lanza V. F., de Toro M., Scharringa J., Dohmen W., Du Y., Hu J., Lei Y., Li N. et al.( 2014;). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. . PLoS Genet 10: e1004776. [CrossRef] [PubMed]
    [Google Scholar]
  5. El-Sayed A. K., Hothersall J., Thomas C. M..( 2001;). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. . Microbiology 147: 2127–2139. [CrossRef] [PubMed]
    [Google Scholar]
  6. Enne V. I., Bennett P. M., Livermore D. M., Hall L. M..( 2004;). Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. . J Antimicrob Chemother 53: 958–963. [CrossRef] [PubMed]
    [Google Scholar]
  7. Favre-Bonte S., Joly B., Forestier C..( 1999;). Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. . Infect Immun 67: 554–561.[PubMed]
    [Google Scholar]
  8. Ferguson L. R., Denny W. A..( 2007;). Genotoxicity of non-covalent interactions: DNA intercalators. . Mutat Res 623: 14–23. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fischer E. A., Dierikx C. M., van Essen-Zandbergen A., van Roermund H. J., Mevius D. J., Stegeman A., Klinkenberg D..( 2014;). The IncI1 plasmid carrying the blaCTX-M-1 gene persists in in vitro culture of a Escherichia coli strain from broilers. . BMC Microbiol 14: 77. [CrossRef] [PubMed]
    [Google Scholar]
  10. Freire Martín I., Abuloun M., Reichel R., La Ragione R. M., Woodward M. J..( 2014;). Sequence analysis of a CTX-M-1 IncI1 plasmid found in Salmonella 4,5,12:i:-, Escherichia coli and Klebsiella pneumoniae on a UK pig farm. . J Antimicrob Chemother 69: 2098–2101. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gerner-Smidt P., Hise K., Kincaid J., Hunter S., Rolando S., Hyytiä-Trees E., Ribot E. M., Swaminathan B..( 2006;). PulseNet USA: a five-year update. . Foodborne Pathog Dis 3: 9–19. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gniadkowski M..( 2001;). Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. . Clin Microbiol Infect 7: 597–608. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hale L., Lazos O., Haines A., Thomas C..( 2010;). An efficient stress-free strategy to displace stable bacterial plasmids. . Biotechniques 48: 223–228. [CrossRef] [PubMed]
    [Google Scholar]
  14. Horton R. A., Randall L. P., Snary E. L., Cockrem H., Lotz S., Wearing H., Duncan D., Rabie A., McLaren I. et al.( 2011;). Fecal carriage and shedding density of CTX-M extended-spectrum {beta}-lactamase-producing Escherichia coli in cattle, chickens, and pigs: implications for environmental contamination and food production. . Appl Environ Microbiol 77: 3715–3719. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kado C. I., Liu S. T..( 1981;). Rapid procedure for detection and isolation of large and small plasmids. . J Bacteriol 145: 1365–1373.[PubMed]
    [Google Scholar]
  16. Kahm M., Lichtenberg-Fraté H., Ludwig J., Kschischo M..( 2010;). grofit: fitting biological growth curves with R. . J Stat Softw 33: 1–21.[PubMed] [Crossref]
    [Google Scholar]
  17. Lee S. W., Edlin G..( 1985;). Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli . . Gene 39: 173–180. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lenski R. E., Simpson S. C., Nguyen T. T..( 1994;). Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. . J Bacteriol 176: 3140–3147.[PubMed] [Crossref]
    [Google Scholar]
  19. Livermore D. M., Canton R., Gniadkowski M., Nordmann P., Rossolini G. M., Arlet G., Ayala J., Coque T. M., Kern-Zdanowicz I. et al.( 2007;). CTX-M: changing the face of ESBLs in Europe. . J Antimicrob Chemother 59: 165–174. [CrossRef] [PubMed]
    [Google Scholar]
  20. Modi R. I., Adams J..( 1991;). Coevolution in bacterial-plasmid populations. . Evolution 45: 656–667. [CrossRef]
    [Google Scholar]
  21. Pitout J. D., Gregson D. B., Church D. L., Elsayed S., Laupland K. B..( 2005;). Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. . J Clin Microbiol 43: 2844–2849. [CrossRef] [PubMed]
    [Google Scholar]
  22. Praszkier J., Pittard A. J..( 2005;). Control of replication in I-complex plasmids. . Plasmid 53: 97–112. [CrossRef] [PubMed]
    [Google Scholar]
  23. R Core Team( 2014;). R: A Language and Environment for Statistical Computing. Vienna:: R Foundation for Statistical Computing;.
    [Google Scholar]
  24. Randall L., Wu G., Phillips N., Coldham N., Mevius D., Teale C..( 2012;). Virulence genes in bla(CTX-M) Escherichia coli isolates from chickens and humans. . Res Vet Sci 93: 23–27. [CrossRef] [PubMed]
    [Google Scholar]
  25. Searle L. E., Best A., Nunez A., Salguero F. J., Johnson L., Weyer U., Dugdale A. H., Cooley W. A., Carter B. et al.( 2009;). A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. . J Med Microbiol 58: 37–48. [CrossRef] [PubMed]
    [Google Scholar]
  26. Shaw K. J., Rather P. N., Hare R. S., Miller G. H..( 1993;). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. . Microbiol Rev 57: 138–163.[PubMed]
    [Google Scholar]
  27. Tatsuno I., Horie M., Abe H., Miki T., Makino K., Shinagawa H., Taguchi H., Kamiya S., Hayashi T. et al.( 2001;). toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. . Infect Immun 69: 6660–6669. [CrossRef] [PubMed]
    [Google Scholar]
  28. Woodward M. J., Sojka M., Sprigings K. A., Humphrey T. J..( 2000;). The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. . J Med Microbiol 49: 481–487. [CrossRef] [PubMed]
    [Google Scholar]
  29. Zagaglia C., Casalino M., Colonna B., Conti C., Calconi A., Nicoletti M..( 1991;). Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. . Infect Immun 59: 792–799.[PubMed]
    [Google Scholar]
  30. Zünd P., Lebek G..( 1980;). Generation time-prolonging R plasmids: correlation between increases in the generation time of Escherichia coli caused by R plasmids and their molecular size. . Plasmid 3: 65–69. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000271
Loading
/content/journal/jmm/10.1099/jmm.0.000271
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error