1887

Abstract

Using a sequence-based approach we previously identified an IncI1 CTX-M-1 plasmid, pIFM3791, on a single pig farm in the UK that was harboured by , and serotype 4,5,12:i:-. To test the hypothesis that the plasmid had spread rapidly into these differing host bacteria we wished to assess whether the plasmid conferred a fitness advantage. To do this an IncI1 curing vector was constructed and used to displace the IncI1 CTX-M-1 plasmids from strain B3791 and several other unrelated IncI1-harbouring strains indicating the potential wider application of the curing vector. The IncI1 CTX-M-1 plasmid was reintroduced by conjugation into the cured strain and also a naturally IncI1 plasmid free serotype 4,5,12:i:-, S348/11. Original, cured and complemented strains were tested for metabolic competence using Biolog technology and in competitive growth, association to mammalian cells and biofilm formation experiments. The plasmid-cured strain grew more rapidly than either the original plasmid-carrying strain or plasmid-complemented strains in competition experiments. Additionally, the plasmid-cured strain was significantly better at respiring with -sorbose as a carbon source and putrescine, γ-amino-n-butyric acid, -alanine and -proline as nitrogen sources. By contrast, no differences in phenotype were found when comparing plasmid-harbouring and plasmid-free S348/11. In conclusion, the IncI1 curing vector successfully displaced multiple IncI plasmids. The IncI1 CTX-M1 plasmid conferred a growth disadvantage upon , possibly by imposing a metabolic burden, the mechanism of which remains to be determined.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000271
2016-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/7/611.html?itemId=/content/journal/jmm/10.1099/jmm.0.000271&mimeType=html&fmt=ahah

References

  1. Batchelor M., Hopkins K., Threlfall E. J., Clifton-Hadley F. A., Stallwood A. D., Davies R. H., Liebana E. 2005; blaCTX-M Genes in clinical salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrobial Agents and Chemotherapy 49:1319–1322 [View Article]
    [Google Scholar]
  2. Bouma J. E., Lenski R. E. 1988; Evolution of a bacteria/plasmid association. Nature 335:351–352 [View Article][PubMed]
    [Google Scholar]
  3. Couturier M., Bex F., Bergquist P. L., Maas W. K. 1988; Identification and classification of bacterial plasmids. Microbiol Rev 52:375–395[PubMed]
    [Google Scholar]
  4. de Been M., Lanza V. F., de Toro M., Scharringa J., Dohmen W., Du Y., Hu J., Lei Y., Li N. et al. 2014; Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 10:e1004776 [View Article][PubMed]
    [Google Scholar]
  5. El-Sayed A. K., Hothersall J., Thomas C. M. 2001; Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139 [View Article][PubMed]
    [Google Scholar]
  6. Enne V. I., Bennett P. M., Livermore D. M., Hall L. M. 2004; Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J Antimicrob Chemother 53:958–963 [View Article][PubMed]
    [Google Scholar]
  7. Favre-Bonte S., Joly B., Forestier C. 1999; Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67:554–561[PubMed]
    [Google Scholar]
  8. Ferguson L. R., Denny W. A. 2007; Genotoxicity of non-covalent interactions: DNA intercalators. Mutat Res 623:14–23 [View Article][PubMed]
    [Google Scholar]
  9. Fischer E. A., Dierikx C. M., van Essen-Zandbergen A., van Roermund H. J., Mevius D. J., Stegeman A., Klinkenberg D. 2014; The IncI1 plasmid carrying the blaCTX-M-1 gene persists in in vitro culture of a Escherichia coli strain from broilers. BMC Microbiol 14:77 [View Article][PubMed]
    [Google Scholar]
  10. Freire Martín I., Abuloun M., Reichel R., La Ragione R. M., Woodward M. J. 2014; Sequence analysis of a CTX-M-1 IncI1 plasmid found in Salmonella 4,5,12:i:-, Escherichia coli and Klebsiella pneumoniae on a UK pig farm. J Antimicrob Chemother 69:2098–2101 [View Article][PubMed]
    [Google Scholar]
  11. Gerner-Smidt P., Hise K., Kincaid J., Hunter S., Rolando S., Hyytiä-Trees E., Ribot E. M., Swaminathan B. 2006; PulseNet USA: a five-year update. Foodborne Pathog Dis 3:9–19 [View Article][PubMed]
    [Google Scholar]
  12. Gniadkowski M. 2001; Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect 7:597–608 [View Article][PubMed]
    [Google Scholar]
  13. Hale L., Lazos O., Haines A., Thomas C. 2010; An efficient stress-free strategy to displace stable bacterial plasmids. Biotechniques 48:223–228 [View Article][PubMed]
    [Google Scholar]
  14. Horton R. A., Randall L. P., Snary E. L., Cockrem H., Lotz S., Wearing H., Duncan D., Rabie A., McLaren I. et al. 2011; Fecal carriage and shedding density of CTX-M extended-spectrum {beta}-lactamase-producing Escherichia coli in cattle, chickens, and pigs: implications for environmental contamination and food production. Appl Environ Microbiol 77:3715–3719 [View Article][PubMed]
    [Google Scholar]
  15. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373[PubMed]
    [Google Scholar]
  16. Kahm M., Lichtenberg-Fraté H., Ludwig J., Kschischo M. 2010; grofit: fitting biological growth curves with R. J Stat Softw 33:1–21[PubMed] [Crossref]
    [Google Scholar]
  17. Lee S. W., Edlin G. 1985; Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli . Gene 39:173–180 [View Article][PubMed]
    [Google Scholar]
  18. Lenski R. E., Simpson S. C., Nguyen T. T. 1994; Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol 176:3140–3147[PubMed] [Crossref]
    [Google Scholar]
  19. Livermore D. M., Canton R., Gniadkowski M., Nordmann P., Rossolini G. M., Arlet G., Ayala J., Coque T. M., Kern-Zdanowicz I. et al. 2007; CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174 [View Article][PubMed]
    [Google Scholar]
  20. Modi R. I., Adams J. 1991; Coevolution in bacterial-plasmid populations. Evolution 45:656–667 [View Article]
    [Google Scholar]
  21. Pitout J. D., Gregson D. B., Church D. L., Elsayed S., Laupland K. B. 2005; Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. J Clin Microbiol 43:2844–2849 [View Article][PubMed]
    [Google Scholar]
  22. Praszkier J., Pittard A. J. 2005; Control of replication in I-complex plasmids. Plasmid 53:97–112 [View Article][PubMed]
    [Google Scholar]
  23. R Core Team 2014 R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing;
    [Google Scholar]
  24. Randall L., Wu G., Phillips N., Coldham N., Mevius D., Teale C. 2012; Virulence genes in bla(CTX-M) Escherichia coli isolates from chickens and humans. Res Vet Sci 93:23–27 [View Article][PubMed]
    [Google Scholar]
  25. Searle L. E., Best A., Nunez A., Salguero F. J., Johnson L., Weyer U., Dugdale A. H., Cooley W. A., Carter B. et al. 2009; A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. J Med Microbiol 58:37–48 [View Article][PubMed]
    [Google Scholar]
  26. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. 1993; Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163[PubMed]
    [Google Scholar]
  27. Tatsuno I., Horie M., Abe H., Miki T., Makino K., Shinagawa H., Taguchi H., Kamiya S., Hayashi T. et al. 2001; toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect Immun 69:6660–6669 [View Article][PubMed]
    [Google Scholar]
  28. Woodward M. J., Sojka M., Sprigings K. A., Humphrey T. J. 2000; The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol 49:481–487 [View Article][PubMed]
    [Google Scholar]
  29. Zagaglia C., Casalino M., Colonna B., Conti C., Calconi A., Nicoletti M. 1991; Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun 59:792–799[PubMed]
    [Google Scholar]
  30. Zünd P., Lebek G. 1980; Generation time-prolonging R plasmids: correlation between increases in the generation time of Escherichia coli caused by R plasmids and their molecular size. Plasmid 3:65–69 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000271
Loading
/content/journal/jmm/10.1099/jmm.0.000271
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error