1887

Abstract

Bacterially-driven mucosal inflammation and the development of periimplantitis can lead to oral implant failure. In this study, initial bacterial adhesion after 2 h, and biofilm formation after 1 day and 3 days, were analysed in situ on novel 3 mol % yttria-stabilized tetragonal zirconia polycrystal samples, as well as on alumina and niobium co-doped yttria-stabilized tetragonal zirconia samples. Pure titanium implant material and bovine enamel slabs served as controls. The initially adherent oral bacteria were determined by 4’,6-diamidino-2-phenylindole-staining. Biofilm thickness, surface covering grade and content of oral streptococci within the biofilm were measured by fluorescence in situ hybridization. No significant differences between the ceramic and titanium surfaces were detectable for either initial bacterial adhesion or the oral streptococci content of the in situ biofilm. The oral biofilm thickness on the implant surfaces were almost doubled after three days compared to the first day of oral exposure. Nevertheless, the biofilm thickness values among the different implant surfaces and controls did not differ significantly for any time point of measurement after 1 day or 3 days of biofilm formation. Significant differences in the covering grade were only detected between day 1 and day 3 for each tested implant material group. The content of oral streptococci increased significantly in parallel with the increase in biofilm age from day 1 to day 3. In conclusion, oral implant zirconia surfaces with low surface roughness are comparable to titanium surfaces with respect to initial bacterial adhesion and biofilm formation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000267
2016-07-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/7/596.html?itemId=/content/journal/jmm/10.1099/jmm.0.000267&mimeType=html&fmt=ahah

References

  1. Al-Ahmad A., Wiedmann-Al-Ahmad M., Fackler A., Follo M., Hellwig E., Bächle M., Hannig C., Han J. S., Wolkewitz M. et al.( 2013;). In vivo study of the initial bacterial adhesion on different implant materials. . Arch Oral Biol 58: 1139–1147. [CrossRef] [PubMed]
    [Google Scholar]
  2. Al-Ahmad A., Wiedmann-Al-Ahmad M., Faust J., Bächle M., Follo M., Wolkewitz M., Hannig C., Hellwig E., Carvalho C. et al.( 2010;). Biofilm formation and composition on different implant materials in vivo. . J Biomed Mater Res B Appl Biomater 95: 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A..( 1990;). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. . Appl Environ Microbiol 56: 1919–1925.[PubMed]
    [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K. H..( 1995;). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. . Microbiol Rev 59: 143–169.[PubMed]
    [Google Scholar]
  5. Amoroso P. F., Pier-Francesco A., Adams R. J., Waters M. G., Williams D. W..( 2006;). Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis : an in vitro study. . Clin Oral Implants Res 17: 633–637. [CrossRef] [PubMed]
    [Google Scholar]
  6. Andreiotelli M., Wenz H. J., Kohal R. J..( 2009;). Are ceramic implants a viable alternative to titanium implants? A systematic literature review. . Clin Oral Implants Res 20: 32–47. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bahat O., Sullivan R. M..( 2010;). Parameters for successful implant integration revisited part II: algorithm for immediate loading diagnostic factors. . Clin Implant Dent Relat Res 12: e1322. [CrossRef] [PubMed]
    [Google Scholar]
  8. Barbour M. E., O'Sullivan D. J., Jenkinson H. F., Jagger D. C..( 2007;). The effects of polishing methods on surface morphology, roughness and bacterial colonisation of titanium abutments. . J Mater Sci Mater Med 18: 1439–1447. [CrossRef] [PubMed]
    [Google Scholar]
  9. Benic G. I., Mir-Mari J., Hämmerle C. H..( 2014;). Loading protocols for single-implant crowns: a systematic review and meta-analysis. . Int J Oral Maxillofac Implants 29: 222–238. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bächle M., Butz F., Hübner U., Bakalinis E., Kohal R. J..( 2007;). Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. . Clin Oral Implants Res 18: 53–59. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen S. T., Buser D..( 2014;). Esthetic outcomes following immediate and early implant placement in the anterior maxilla: a systematic review. . Int J Oral Maxillofac Implants 29: 186–215. [CrossRef] [PubMed]
    [Google Scholar]
  12. Crawford R. J., Webb H. K., Truong V. K., Hasan J., Ivanova E. P..( 2012;). Surface topographical factors influencing bacterial attachment. . Adv Colloid Interface Sci 179-182: 142–149. [CrossRef] [PubMed]
    [Google Scholar]
  13. de Oliveira G. R., Pozzer L., Cavalieri-Pereira L., de Moraes P. H., Olate S., de Albergaría Barbosa J. R..( 2012;). Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study. . J Periodontal Implant Sci 42: 217–223. [CrossRef] [PubMed]
    [Google Scholar]
  14. Depprich R., Naujoks C., Ommerborn M., Schwarz F., Kübler N. R., Handschel J..( 2014;). Current findings regarding zirconia implants. . Clin Implant Dent Relat Res 16: 124–137. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C., Yu W. H., Lakshmanan A., Wade W. G..( 2010;). The human oral microbiome. . J Bacteriol 192: 5002–5017. [CrossRef] [PubMed]
    [Google Scholar]
  16. Elter C., Heuer W., Demling A., Hannig M., Heidenblut T., Bach F. W., Stiesch-Scholz M..( 2008;). Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. . Int J Oral Maxillofac Implants 23: 327–334.[PubMed]
    [Google Scholar]
  17. Esposito M., Ardebili Y., Worthington H. V..( 2014;). Interventions for replacing missing teeth: different types of dental implants. . Cochrane Database Syst Rev 7: CD003815. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fröjd V., Chávez de Paz L., Andersson M., Wennerberg A., Davies J. R., Svensäter G..( 2011;). In situ analysis of multispecies biofilm formation on customized titanium surfaces. . Mol Oral Microbiol 26: 241–252. [CrossRef] [PubMed]
    [Google Scholar]
  19. Griffen A. L., Beall C. J., Campbell J. H., Firestone N. D., Kumar P. S., Yang Z. K., Podar M., Leys E. J..( 2012;). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. . ISME J 6: 85. [CrossRef] [PubMed]
    [Google Scholar]
  20. Grössner-Schreiber B., Teichmann J., Hannig M., Dörfer C., Wenderoth D. F., Ott S. J..( 2009;). Modified implant surfaces show different biofilm compositions under in vivo conditions. . Clin Oral Implants Res 20: 817–826. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hannig C., Hannig M..( 2009;). The oral cavity: a key system to understand substratum-dependent bioadhesion on solid surfaces in man. . Clin Oral Investig 13: 123–139. [CrossRef] [PubMed]
    [Google Scholar]
  22. Heuer W., Stiesch M., Abraham W. R..( 2011;). Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth. . Eur J Clin Microbiol Infect Dis 30: 193–200. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jacobi-Gresser E., Huesker K., Schütt S..( 2013;). Genetic and immunological markers predict titanium implant failure: a retrospective study. . Int J Oral Maxillofac Surg 42: 537–543. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jorand F. P., Debuy S., Kamagate S. F., Engels-Deutsch M..( 2015;). Evaluation of a biofilm formation by Desulfovibrio fairfieldensis on titanium implants. . Lett Appl Microbiol 60: 279–287. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jung D. J., Al-Ahmad A., Follo M., Spitzmüller B., Hoth-Hannig W., Hannig M., Hannig C..( 2010;). Visualization of initial bacterial colonization on dentine and enamel in situ. . J Microbiol Methods 81: 166–174. [CrossRef] [PubMed]
    [Google Scholar]
  26. Karygianni L., Follo M., Hellwig E., Burghardt D., Wolkewitz M., Anderson A., Al-Ahmad A..( 2012;). Microscope-based imaging platform for large-scale analysis of oral biofilms. . Appl Environ Microbiol 78: 8703–8711. [CrossRef] [PubMed]
    [Google Scholar]
  27. Karygianni L., Jaehnig A., Schienle S., Bernsmann F., Adolfsson E., Kohal R. J., Chevalier J., Al-Ahmad A..( 2013;). Initial bacterial adhesion on different yttria-stabilized tetragonal zirconia implant surfaces in vitro. . Mater 6: 5659–5674.[Crossref]
    [Google Scholar]
  28. Karygianni L., Ruf S., Follo M., Hellwig E., Bucher M., Anderson A. C., Vach K., Al-Ahmad A..( 2014;). Novel broad-spectrum antimicrobial photoinactivation of in situ oral biofilms by visible light plus water-filtered infrared A. . Appl Environ Microbiol 80: 7324–7336. [CrossRef] [PubMed]
    [Google Scholar]
  29. Keijser B. J., Zaura E., Huse S. M., van der Vossen J. M., Schuren F. H., Montijn R. C., Ten Cate J. M., Crielaard W..( 2008;). Pyrosequencing analysis of the oral microflora of healthy adults. . J Dent Res 87: 1016–1020.[PubMed] [Crossref]
    [Google Scholar]
  30. Kim S. S., Yeo I. S., Lee S. J., Kim D. J., Jang B. M., Kim S. H., Han J. S..( 2013;). Clinical use of alumina-toughened zirconia abutments for implant-supported restoration: prospective cohort study of survival analysis. . Clin Oral Implants Res 24: 517–522. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kohal R. J., Papavasiliou G., Kamposiora P., Tripodakis A., Strub J. R..( 2002;). Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. . Int J Prosthodont 15: 189–194.[PubMed]
    [Google Scholar]
  32. Kohal R. J., Patzelt S. B., Butz F., Sahlin H..( 2013;). One-piece zirconia oral implants: one-year results from a prospective case series. 2. Three-unit fixed dental prosthesis (FDP) reconstruction. . J Clin Periodontol 40: 553–562. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lima E. M., Koo H., Vacca Smith A. M., Rosalen P. L., Del Bel Cury A. A..( 2008;). Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. . Clin Oral Implants Res 19: 780–785. [CrossRef] [PubMed]
    [Google Scholar]
  34. McLean J. S..( 2014;). Advancements toward a systems level understanding of the human oral microbiome. . Front Cell Infect Microbiol 4: 98. [CrossRef] [PubMed]
    [Google Scholar]
  35. Miyazaki T., Nakamura T., Matsumura H., Ban S., Kobayashi T..( 2013;). Current status of zirconia restoration. . J Prosthodont Res 57: 236–261. [CrossRef] [PubMed]
    [Google Scholar]
  36. Moraschini V., Poubel L. A., Ferreira V. F., Barboza E. S..( 2015;). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. . Int J Oral Maxillofac Surg 44: 377–388. [CrossRef] [PubMed]
    [Google Scholar]
  37. Nakamichi I., Iwaku M., Fusayama T..( 1983;). Bovine teeth as possible substitutes in the adhesion test. . J Dent Res 62: 1076–1081.[PubMed] [Crossref]
    [Google Scholar]
  38. Nascimento C., Ikeda L. N., Pita M. S., Pedroso e Silva R. C., Pedrazzi V., Albuquerque R. F., Ribeiro R. F..( 2015;). Marginal fit and microbial leakage along the implant-abutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. . J Prosthet Dent 114: 831–838. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ozkurt Z., Kazazoglu E..( 2011;). Zirconia dental implants: a literature review. . J Oral Implantol 37: 367–376. [CrossRef] [PubMed]
    [Google Scholar]
  40. Renvert S., Lindahl C., Rutger Persson G..( 2012;). The incidence of peri-implantitis for two different implant systems over a period of thirteen years. . J Clin Periodontol 39: 1191–1197. [CrossRef] [PubMed]
    [Google Scholar]
  41. Scarano A., Piattelli M., Caputi S., Favero G. A., Piattelli A..( 2004;). Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. . J Periodontol 75: 292–296. [CrossRef] [PubMed]
    [Google Scholar]
  42. Schaudinn C., Carr G., Gorur A., Jaramillo D., Costerton J. W., Webster P..( 2009;). Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). . J Microsc 235: 124–127. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sicilia A., Cuesta S., Coma G., Arregui I., Guisasola C., Ruiz E., Maestro A..( 2008;). Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. . Clin Oral Implants Res 19: 823–835. [CrossRef] [PubMed]
    [Google Scholar]
  44. Smeets R., Henningsen A., Jung O., Heiland M., Hammächer C., Stein J. M..( 2014;). Definition, etiology, prevention and treatment of peri-implantitis: a review. . Head Face Med 10: 34. [CrossRef] [PubMed]
    [Google Scholar]
  45. Teughels W., Van Assche N., Sliepen I., Quirynen M..( 2006;). Effect of material characteristics and/or surface topography on biofilm development. . Clin Oral Implants Res 17: Suppl 2 68–81. [CrossRef] [PubMed]
    [Google Scholar]
  46. Vadillo-Rodríguez V., Busscher H. J., van der Mei H. C., de Vries J., Norde W..( 2005;). Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. . Colloids Surf B Biointerfaces 41: 33–41. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wen X., Liu R., Li G., Deng M., Liu L., Zeng X. T., Nie X..( 2014;). History of periodontitis as a risk factor for long-term survival of dental implants: a meta-analysis. . Int J Oral Maxillofac Implants 29: 1271–1280.[PubMed] [Crossref]
    [Google Scholar]
  48. Wenz H. J., Bartsch J., Wolfart S., Kern M..( 2008;). Osseointegration and clinical success of zirconia dental implants: a systematic review. . Int J Prosthodont 21: 27–36.[PubMed]
    [Google Scholar]
  49. Yao Y., Berg E. A., Costello C. E., Troxler R. F., Oppenheim F. G..( 2003;). Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. . J Biol Chem 278: 5300–5308. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhao B., van der Mei H. C., Subbiahdoss G., de Vries J., Rustema-Abbing M., Kuijer R., Busscher H. J., Ren Y..( 2014;). Soft tissue integration versus early biofilm formation on different dental implant materials. . Dent Mater 30: 716–727. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zijnge V., van Leeuwen M. B., Degener J. E., Abbas F., Thurnheer T., Gmür R., Harmsen H. J..( 2010;). Oral biofilm architecture on natural teeth. . PLoS One 5: e9321. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zitzmann N. U., Berglundh T..( 2008;). Definition and prevalence of peri-implant diseases. . J Clin Periodontol 35: 286–291. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000267
Loading
/content/journal/jmm/10.1099/jmm.0.000267
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error