1887

Abstract

Caseous lymphadenitis (CLA) is a disease caused by It affects mainly small ruminants and causes significant economic losses worldwide. Because symptoms are not immediately noticeable, CLA clinical diagnosis is not effective. Numerous serological tests are being developed to detect the disease in asymptomatic animals, but currently available immunoassays have problems with sensitivity. Current ELISA formats use native bacterial antigens, and recombinant proteins could be useful for improving the immunoassay parameters. The proteins CP0126a, CP0369 and CP1957 were identified from 2097 candidate proteins by mature epitope density (MED) analysis, expressed in and evaluated in an indirect immunoenzymic system. The CP0126a, CP0369 and CP1957 ELISAs showed 77.5 %, 92.5 % and 92.5 % specificity and 95 %, 90 % and 85 % sensitivity, respectively. Receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0.874, 0.951 and 0.881, respectively. The proteins identified were recognized by antibodies in the sera from infected animals without being recognized in negative samples. The ELISA assay using the rCP0369 protein as antigen had the greatest specificity and sensitivity values, followed by rCP1957. This is an interesting strategy for seroepidemiological investigations in sheep flocks due to its significant specificity and sensitivity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000263
2016-06-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/6/521.html?itemId=/content/journal/jmm/10.1099/jmm.0.000263&mimeType=html&fmt=ahah

References

  1. Anderson M. , Nairn M. E. . ( 1984;). Control of caseous lymphadenitis in goats by vaccination. . Colloques De l'INRA 28: 605–609.
    [Google Scholar]
  2. Awad F. I. . ( 1960;). Serologic investigation of pseudotuberculosis in sheep. I. Agglutination test. . Am J Vet Res 21: 251–253.
    [Google Scholar]
  3. Baird G. J. , Fontaine M. C. . ( 2007;). Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. . J Comp Pathol 137: 179–210. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baird G. J. , Malone F. E. . ( 2010;). Control of caseous lymphadenitis in six sheep flocks using clinical examination and regular ELISA testing. . Vet Rec 166: 358–362. [CrossRef] [PubMed]
    [Google Scholar]
  5. Binns S. H. , Green L. E. , Bailey M. . ( 2007;). Development and validation of an ELISA to detect antibodies to Corynebacterium pseudotuberculosis in ovine sera. . Vet Microbiol 123: 169–179. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burrel D. H. . ( 1980;). A simplified double immunodiffusion technique for detection of C. ovis antitoxin. . Res Vet Sci 28: 234–237.
    [Google Scholar]
  7. Costa M. P. , McCulloch J. A. , Almeida S. S. , Dorella F. A. , Fonseca C. T. , Oliveira D. M. , Teixeira M. F. , Laskowska E. , Lipinska B. , other authors . ( 2011;). Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. . BMC Res Notes 4: 243. [CrossRef] [PubMed]
    [Google Scholar]
  8. D'Afonseca V. , Moraes P. M. , Dorella F. A. , Pacheco L. G. , Meyer R. , Portela R. W. , Miyoshi A. , Azevedo V. . ( 2008;). A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications. . Genet Mol Res 7: 252–260. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dercksen D. P. , Brinkhof J. M. , Dekker-Nooren T. , Maanen K. , Bode C. F. , Baird G. , Kamp E. M. . ( 2000;). A comparison of four serological tests for the diagnosis of caseous lymphadenitis in sheep and goats. . Vet Microbiol 75: 167–175. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dorella F. A. , Pacheco L. G. , Oliveira S. C. , Miyoshi A. , Azevedo V. . ( 2006;). Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. . Vet Res 37: 201–218. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gao B. , Paramanathan R. , Gupta R. S. . ( 2006;). Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. . Antonie Van Leeuwenhoek 90: 69–91. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guimarães A. S. , Carmo F. B. , Pauletti R. B. , Seyffert N. , Ribeiro D. , Lage A. P. , Heunemann M. B. , Myyoshi A. , Azevedo V. , other authors . ( 2011;). Caseous lymphadenitis: epidemiology, diagnosis, and control. . The IIOAB Journal 2: 33–43.
    [Google Scholar]
  13. Huerta B. , Gómez-Gascón L. , Vela A. I. , Fernández-Garayzábal J. F. , Casamayor A. , Tarradas C. , Maldonado A. . ( 2013;). Comparison of two biochemical methods for identifying Corynebacterium pseudotuberculosis isolated from sheep and goats. . Vet J 196: 552–554. [CrossRef] [PubMed]
    [Google Scholar]
  14. Join-Lambert O. F. , Ouache M. , Canioni D. , Beretti J. L. , Blanche S. , Berche P. , Kayal S. . ( 2006;). Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. . Pediatr Infect Dis J 25: 848–851. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kaba J. , Kutschke L. , Gerlach G. F. . ( 2001;). Development of an ELISA for the diagnosis of Corynebacterium pseudotuberculosis infections in goats. . Vet Microbiol 78: 155–163. [CrossRef] [PubMed]
    [Google Scholar]
  16. Landis J. R. , Koch G. G. . ( 1977;). The measurement of observer agreement for categorical data. . Biometrics 33: 159–174. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lundegaard C. , Lamberth K. , Harndahl M. , Buus S. , Lund O. , Nielsen M. . ( 2008;). Net MHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. . Nucleic Acids Res 36: W509–W512. [CrossRef] [PubMed]
    [Google Scholar]
  18. MAPA (Ministério da Agricultura, Pecuária e Abastecimento, Brazil) ( 2014;). Programa Nacional de Sanidade de Caprinos e Ovinos – PNSCO. . Available at http://www.agricultura.gov.br/animal/sanidade-animal/programas/prog-nacional-sanidade-caprinos-ovinos-PNSCO. Accessed 29 September 2015.
  19. Menzies P. I. , Hwang Y. T. , Prescott J. F. . ( 2004;). Comparison of an interferon-gamma to a phospholipase D enzyme-linked immunosorbent assay for diagnosis of Corynebacterium pseudotuberculosis infection in experimentally infected goats. . Vet Microbiol 100: 129–137. [CrossRef] [PubMed]
    [Google Scholar]
  20. Pacheco L. G. , Slade S. E. , Seyffert N. , Santos A. R. , Castro T. L. , Silva W. M. , Santos A. V. , Santos S. G. , Farias L. M. , other authors . ( 2011;). A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis . . BMC Microbiol 11:. [CrossRef] [PubMed]
    [Google Scholar]
  21. Paule B. J. , Azevedo V. , Regis L. F. , Carminati R. , Bahia C. R. , Vale V. L. , Moura-Costa L. F. , Freire S. M. , Nascimento I. , other authors . ( 2003;). Experimental Corynebacterium pseudotuberculosis primary infection in goats: kinetics of IgG and interferon-gamma production, IgG avidity and antigen recognition by Western blotting. . Vet Immunol Immunopathol 96: 129–139. [CrossRef] [PubMed]
    [Google Scholar]
  22. Peel M. M. , Palmer G. G. , Stacpoole A. M. , Kerr T. G. . ( 1997;). Human lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases from Australia and review. . Clin Infect Dis 24: 185–191. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pethick F. E. , Lainson A. F. , Yaga R. , Flockhart A. , Smith D. G. E. , Donachie W. , Cerdeira L. T. , Silva A. , Bol E. , other authors . ( 2012a;). Complete genome sequence of Corynebacterium pseudotuberculosis strain 1/06-A, isolated from a horse in North America. . J Bacteriol 194: 4476. [CrossRef]
    [Google Scholar]
  24. Pethick F. E. , Lainson A. F. , Yaga R. , Flockhart A. , Smith D. G. E. , Donachie W. , Cerdeira L. T. , Silva A. , Bol E. , other authors . ( 2012b;). Complete genome sequences of Corynebacterium pseudotuberculosis strains 3/99-5 and 42/02-A, isolated from sheep in Scotland and Australia, respectively. . J Bacteriol 194: 4736–4737. [CrossRef]
    [Google Scholar]
  25. Pinto A. C. , Ramos R. T. J. , Silva W. M. , Rocha F. S. , Barbosa S. , Miyoshi A. , Schneider M. P. C. , Silva A. , Azevedo V. . ( 2012;). The core stimulon of Corynebacterium pseudotuberculosis strain 1002 identified using ab initio methodologies. . Integr Biol 4: 789–794. [CrossRef]
    [Google Scholar]
  26. Ramos C. R. , Abreu P. A. , Nascimento A. L. , Ho P. L. . ( 2004;). A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. . Braz J Med Biol Res 37: 1103–1109. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rebouças M. F. , Loureiro D. , Bastos B. L. , Moura-Costa L. F. , Hanna S. A. , Azevedo V. , Meyer R. , Portela R. W. . ( 2013;). Development of an indirect ELISA to detect Corynebacterium pseudotuberculosis specific antibodies in sheep employing T1 strain culture supernatant as antigen. . Pesqui Vet Bras 33: 1296–1302. [CrossRef]
    [Google Scholar]
  28. Santos A. R. , Carneiro A. , Gala-García A. , Pinto A. , Barh D. , Barbosa E. , Aburjaile F. , Dorella F. , Rocha F. , other authors . ( 2012;). The Corynebacterium pseudotuberculosis in silico predicted pan-exoproteome. . BMC Genomics 13 : Suppl 5, S6. [CrossRef] [PubMed]
    [Google Scholar]
  29. Santos A. R. , Pereira V. B. , Barbosa E. , Baumbach J. , Pauling J. , Röttger R. , Turk M. Z. , Silva A. , Miyoshi A , other authors . ( 2013;). Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins. . BMC Genomics 14: Suppl 6, 1471–2164. [CrossRef] [PubMed]
    [Google Scholar]
  30. Seyffert N. , Guimarães A. S. , Pacheco L. G. , Portela R. W. , Bastos B. L. , Dorella F. A. , Heinemann M. B. , Lage A. P. , Gouveia A. M , other authors . ( 2010;). High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. . Res Vet Sci 88: 50–55. [CrossRef] [PubMed]
    [Google Scholar]
  31. Seyffert N. , Pacheco L. G. C. , Silva W. M. , Castro T. L. P. , Santos A. V. , Santos A. , McCulloch J. A. , Rodrigues M. R. , Santos G. , other authors . ( 2011;). Serological secretome analysis of Corynebacterium pseudotuberculosis . . J Integr OMICS 1: 193–197.
    [Google Scholar]
  32. Silva A. , Schneider M. P. , Cerdeira L. , Barbosa M. S. , Ramos R. T. , Carneiro A. R. , Santos R. , Lima M. , D'Afonseca V. , other authors . ( 2011;). Complete genome sequence of Corynebacterium pseudotuberculosis I19, a strain isolated from a cow in Israel with bovine mastitis. . J Bacteriol 193: 323–324. [CrossRef] [PubMed]
    [Google Scholar]
  33. Silva W. M. , Seyffert N. , Santos A. V. , Castro T. L. , Pacheco L. G. , Santos A. R. , Ciprandi A. , Dorella F. A. , Andrade H. M. . ( 2013;). Identification of 11 new exoproteins in Corynebacterium pseudotuberculosis by comparative analysis of the exoproteome. . Microb Pathog 61-62: 37–42. [CrossRef] [PubMed]
    [Google Scholar]
  34. Soares S. C. , Abreu V. A. , Ramos R. T. , Cerdeira L. , Silva A. , Baumbach J. , Trost E. , Tauch A. , Hirata R. , other authors . ( 2012;). PIPS: Pathogenicity island prediction software. . PLoS One 7:, e30848. [CrossRef] [PubMed]
    [Google Scholar]
  35. Stapleton S. , Bradshaw B. , O'Kennedy R. . ( 2009;). Development of a surface plasmon resonance-based assay for the detection of Corynebacterium pseudotuberculosis infection in sheep. . Anal Chim Acta 651: 98–104. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sting R. , Steng G. , Spengler D. . ( 1998;). Serological studies on Corynebacterium pseudotuberculosis infections in goats using enzyme-linked immunosorbent assay. . Zentralbl Veterinarmed 45: 209–216.[CrossRef]
    [Google Scholar]
  37. Sting R. , Wagner B. , Sari-Turan A. , Stermann M. , Reule M. , Eichner M. , Beyer W. . ( 2012;). Serological studies on Corynebacterium pseudotuberculosis infections in goats in Baden-Wuerttemberg (Germany) and seroreactions on antigens used for newly developed enzyme-linked immunosorbent assays (ELISA). . Berl Munch Tierarztl Wochenschr 125: 67–75.[PubMed]
    [Google Scholar]
  38. Swets J. A. . ( 1988;). Measuring the accuracy of diagnostic systems. . Science 240: 1285–1293. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ventura M. , Canchaya C. , Tauch A. , Chandra G. , Fitzgerald G. F. , Chater K. F. , van Sinderen D. . ( 2007;). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. . Microbiol Mol Biol Rev 71: 495–548. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000263
Loading
/content/journal/jmm/10.1099/jmm.0.000263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error