1887

Abstract

is a human enteric pathogen that causes severe foodborne illness in high-risk populations. Crossing the intestinal barrier is the first critical step for infection. Therefore, reducing colonization and invasion of intestinal epithelium and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentration (SIC) of the plant-derived antimicrobial eugenol, either alone, or in combination with five lactic acid bacteria (LAB), namely (NRRL-B41410), (B-14172), (B-1840), (B-4496) and subspecies (B-633) in reducing adhesion to and invasion of human intestinal epithelial cells (Caco-2). Additionally, the effect of the aforementioned treatments on listeriolysin production, epithelial E-cadherin binding and expression of virulence genes was investigated. Moreover, the efficacy of eugenol-LAB treatments in reducing virulence in the invertebrate model was studied. Eugenol and LAB, either alone or in combination, significantly reduced adhesion to and invasion of intestinal cells (< 0.05). Moreover, eugenol-LAB treatments decreased haemolysin production, E-cadherin binding and virulence gene expression (< 0.05). In addition, the eugenol-LAB treatments significantly enhanced the survival rates of infected with lethal doses of (< 0.05). The results highlight the antilisterial effect of eugenol either alone or in combination with LAB, and justify further investigations in a mammalian model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000251
2016-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/6/443.html?itemId=/content/journal/jmm/10.1099/jmm.0.000251&mimeType=html&fmt=ahah

References

  1. Altincicek B., Vilcinskas A.. 2006; Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella . Dev Comp Immunol30:1108–1118 [CrossRef][PubMed]
    [Google Scholar]
  2. Altincicek B., Knorr E., Vilcinskas A.. 2008; Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum . Dev Comp Immunol32:585–595 [CrossRef][PubMed]
    [Google Scholar]
  3. Altincicek B., Linder M., Linder D., Preissner K. T., Vilcinskas A.. 2007; Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella . Infect Immun75:175–183 [CrossRef][PubMed]
    [Google Scholar]
  4. Alvarez-Domínguez C., Vázquez-Boland J. A., Carrasco-Marín E., López-Mato P., Leyva-Cobián F.. 1997; Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun65:78–88[PubMed]
    [Google Scholar]
  5. Amalaradjou M. A., Narayanan A., Venkitanarayanan K.. 2011; Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. J Urol185:1526–1531 [CrossRef][PubMed]
    [Google Scholar]
  6. Amalaradjou M. A., Narayanan A., Baskaran S. A., Venkitanarayanan K.. 2010; Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli . J Urol184:358–363 [CrossRef][PubMed]
    [Google Scholar]
  7. Aura A.-M.. 2008; Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev7:407–429[CrossRef]
    [Google Scholar]
  8. Bhakdi S., Roth M., Sziegoleit A., Tranum-Jensen J.. 1984; Isolation and identification of two hemolytic forms of streptolysin-O. Infect Immun46:394–400[PubMed]
    [Google Scholar]
  9. Bikandi J., San Millán R., Rementeria A., Garaizar J.. 2004; In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics20:798–799 [CrossRef][PubMed]
    [Google Scholar]
  10. Birmingham C. L., Canadien V., Gouin E., Troy E. B., Yoshimori T., Cossart P., Higgins D. E., Brumell J. H.. 2007; Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy3:442–451 [CrossRef][PubMed]
    [Google Scholar]
  11. Bomba A., Nemcová R., Gancarcíková S., Herich R., Guba P., Mudronová D.. 2002; Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. Br J Nutr88:Suppl. 1S95–99 [CrossRef][PubMed]
    [Google Scholar]
  12. Bonazzi M., Lecuit M., Cossart P.. 2009; Listeria monocytogenes internalin and e-cadherin: From structure to pathogenesis. Cell Microbiol11:693–702 [CrossRef][PubMed]
    [Google Scholar]
  13. Brehm K., Kreft J., Ripio M. T., Vázquez-Boland J. A.. 1996; Regulation of virulence gene expression in pathogenic Listeria . Microbiología (Madrid, Spain)12:219–236[PubMed]
    [Google Scholar]
  14. Brown K., DeCoffe D., Molcan E., Gibson D. L.. 2012; Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients4:1095–1119 [CrossRef][PubMed]
    [Google Scholar]
  15. Burkholder K. M., Kim K. P., Mishra K. K., Medina S., Hahm B. K., Kim H., Bhunia A. K.. 2009; Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect11:859–867 [CrossRef][PubMed]
    [Google Scholar]
  16. Cabanes D., Dussurget O., Dehoux P., Cossart P.. 2004; Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol51:1601–1614 [CrossRef][PubMed]
    [Google Scholar]
  17. Cartwright E. J., Jackson K. A., Johnson S. D., Graves L. M., Silk B. J., Mahon B. E.. 2013; Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis19:1–9 [CrossRef][PubMed]
    [Google Scholar]
  18. Cekmez F., Tayman C., Saglam C., Cetinkaya M., Bedir O., Gnal A., Tun T., Sarici SÜ.. 2012; Well-known but rare pathogen in neonates: Listeria monocytogenes. Eur Rev Med Pharmacol Sci16:58–61[PubMed]
    [Google Scholar]
  19. Corr S., Hill C., Gahan C. G.. 2006; An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog41:241–250 [CrossRef][PubMed]
    [Google Scholar]
  20. Cotter G., Doyle S., Kavanagh K.. 2000; Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol27:163–169 [CrossRef][PubMed]
    [Google Scholar]
  21. Di Pasqua R., De Feo V., Villani F., Mauriello G.. 2005; In vitro antimicrobial activity of essential oils from Mediterranean Apiaceae, Verbenaceae and Lamiaceae against pathogens and spoilage bacteria. Annals in Microbiology55:139–143
    [Google Scholar]
  22. Dominguez-Bello M. G., Blaser M. J.. 2008; Do you have a probiotic in your future?. Microbes Infect10:1072–1076 [CrossRef][PubMed]
    [Google Scholar]
  23. Duncan S. H., Belenguer A., Holtrop G., Johnstone A. M., Flint H. J., Lobley G. E.. 2007; Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol73:1073–1078 [CrossRef][PubMed]
    [Google Scholar]
  24. Dutra V., Silva A. C., Cabrita P., Peres C., Malcata X., Brito L.. 2015; Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food borne pathogens in HT-29 and vero cell cultures. J Med Microbiol (Epub ahead of print) [CrossRef][PubMed]
    [Google Scholar]
  25. Farber J. M., Peterkin P. I.. 1991; Listeria monocytogenes, a food-borne pathogen. Microbiol Rev55:476–511[PubMed]
    [Google Scholar]
  26. Fedhila S., Daou N., Lereclus D., Nielsen-LeRoux C.. 2006; Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol62:339–355 [CrossRef][PubMed]
    [Google Scholar]
  27. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P.. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell65:1127–1141 [CrossRef][PubMed]
    [Google Scholar]
  28. Ghosh S., Dai C., Brown K., Rajendiran E., Makarenko S., Baker J., Ma C., Halder S., Montero M. et al. 2011; Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol301:G39–49 [CrossRef][PubMed]
    [Google Scholar]
  29. Gill A. O., Holley R. A.. 2004; Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei . Appl Environ Microbiol70:5750–5755 [CrossRef][PubMed]
    [Google Scholar]
  30. Goh E. B., Yim G., Tsui W., McClure J., Surette M. G., Davies J.. 2002; Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A99:17025–17030 [CrossRef][PubMed]
    [Google Scholar]
  31. Greiffenberg L., Goebel W., Kim K. S., Weiglein I., Bubert A., Engelbrecht F., Stins M., Kuhn M.. 1998; Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun66:5260–5267[PubMed]
    [Google Scholar]
  32. Gründling A., Gonzalez M. D., Higgins D. E.. 2003; Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol185:6295–6307 [CrossRef][PubMed]
    [Google Scholar]
  33. Hawrelak J. A., Cattley T., Myers S. P.. 2009; Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern Med Rev14:380–384[PubMed]
    [Google Scholar]
  34. Insua J. L., Llobet E., Moranta D., Pérez-Gutiérrez C., Tomás A., Garmendia J., Bengoechea J. A.. 2013; Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella . Infect Immun81:3552–3565 [CrossRef][PubMed]
    [Google Scholar]
  35. Jander G., Rahme L. G., Ausubel F. M.. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol182:3843–3845 [CrossRef][PubMed]
    [Google Scholar]
  36. Johny A. K., Hoagland T., Venkitanarayanan K.. 2010; Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant salmonella enterica serovar typhimurium DT104 to antibiotics. Foodborne Pathog Dis7:1165–1170 [CrossRef][PubMed]
    [Google Scholar]
  37. Joyce S. A., Gahan C. G.. 2010; Molecular pathogenesis of Listeria monocytogenes in the alternative model host G alleria mellonella . Microbiology156:3456–3468 [CrossRef][PubMed]
    [Google Scholar]
  38. Kocks C., Gouin E., Tabouret M., Berche P., Ohayon H., Cossart P.. 1992; L. monocytogenes-induced actin assembly requires the acta gene product, a surface protein. Cell68:521–531 [CrossRef][PubMed]
    [Google Scholar]
  39. Krawczyk-Balska A., Marchlewicz J., Dudek D., Wasiak K., Samluk A.. 2012; Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of β-lactam tolerance and innate resistance to cephalosporins. BMC Microbiol12:278 [CrossRef][PubMed]
    [Google Scholar]
  40. Kreft J., Vázquez-Boland J. A.. 2001; Regulation of virulence genes in Listeria . Int J Med Microbiol291:145–157 [CrossRef][PubMed]
    [Google Scholar]
  41. Lambrechts A., Gevaert K., Cossart P., Vandekerckhove J., Van Troys M.. 2008; Listeria comet tails: The actin-based motility machinery at work. Trends Cell Biol18:220–227 [CrossRef][PubMed]
    [Google Scholar]
  42. Laparra J. M., Sanz Y.. 2010; Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res61:219–225 [CrossRef][PubMed]
    [Google Scholar]
  43. Larrosa M., Yañéz-Gascón M. J., Selma M. V., González-Sarrías A., Toti S., Cerón J. J., Tomás-Barberán F., Dolara P., Espín J. C.. 2009; Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem57:2211–2220 [CrossRef][PubMed]
    [Google Scholar]
  44. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I.. 2006; Microbial ecology: Human gut microbes associated with obesity. Nat New Biol444:1022–1023 [CrossRef]
    [Google Scholar]
  45. Lingnau A., Domann E., Hudel M., Bock M., Nichterlein T., Wehland J., Chakraborty T.. 1995; Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by Prfa-dependent and -independent mechanisms. Infect Immun63:3896–3903[PubMed]
    [Google Scholar]
  46. Marco A. J., Altimira J., Prats N., López S., Dominguez L., Domingo M., Briones V.. 1997; Penetration of Listeria monocytogenes in mice infected by the oral route. Microb Pathog23:255–263 [CrossRef][PubMed]
    [Google Scholar]
  47. Marquis H., Hager E. J.. 2000; pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes . Mol Microbiol35:289–298 [CrossRef][PubMed]
    [Google Scholar]
  48. Miyata S., Casey M., Frank D. W., Ausubel F. M., Drenkard E.. 2003; Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in P seudomonas aeruginosa pathogenesis. Infect Immun71:2404–2413 [CrossRef][PubMed]
    [Google Scholar]
  49. Moroni O., Kheadr E., Boutin Y., Lacroix C., Fliss I.. 2006; Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl Environ Microbiol72:6894–6901 [CrossRef][PubMed]
    [Google Scholar]
  50. Mukherjee K., Altincicek B., Hain T., Domann E., Vilcinskas A., Chakraborty T.. 2010; Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol76:310–317 [CrossRef][PubMed]
    [Google Scholar]
  51. Mukherjee K., Abu Mraheil M., Silva S., Müller D., Cemic F., Hemberger J., Hain T., Vilcinskas A., Chakraborty T.. 2011; Anti-Listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol77:4237–4240 [CrossRef][PubMed]
    [Google Scholar]
  52. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A.. 2005; Galleria mellonella as a model system to study C ryptococcus neoformans pathogenesis. Infect Immun73:3842–3850 [CrossRef][PubMed]
    [Google Scholar]
  53. Ollinger J., Bowen B., Wiedmann M., Boor K. J., Bergholz T. M.. 2009; Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect Immun77:2113–2124 [CrossRef][PubMed]
    [Google Scholar]
  54. Pandiripally V. K., Westbrook D. G., Sunki G. R., Bhunia A. K.. 1999; Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol48:117–124 [CrossRef][PubMed]
    [Google Scholar]
  55. Park J. H., Lee Y. S., Lim Y. K., Kwon S. H., Lee C. U., Yoon B. S.. 2000; Specific binding of recombinant Listeria monocytogenes p60 protein to Caco-2 cells. FEMS Microbiol Lett186:35–40 [CrossRef][PubMed]
    [Google Scholar]
  56. Peleg A. Y., Jara S., Monga D., Eliopoulos G. M., Moellering R. C., Mylonakis E.. 2009; Galleria mellonella as a model system to study A cinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother53:2605–2609 [CrossRef]
    [Google Scholar]
  57. Portnoy D. A., Auerbuch V., Glomski I. J.. 2002; The cell biology of Listeria monocytogenes infection: The intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol158:409–414 [CrossRef][PubMed]
    [Google Scholar]
  58. Prakash R., Bharathi Raja S., Devaraj H., Devaraj S. N.. 2011; Up-regulation of MUC2 and Il-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. PLoS One6:e27046 [CrossRef][PubMed]
    [Google Scholar]
  59. Qiu J., Feng H., Lu J., Xiang H., Wang D., Dong J., Wang J., Wang X., Liu J., Deng X.. 2010; Eugenol reduces the expression of virulence-related exoproteins in S taphylococcus aureus . Appl Environ Microbiol76:5846–5851 [CrossRef][PubMed]
    [Google Scholar]
  60. Reeves E. P., Messina C. G., Doyle S., Kavanagh K.. 2004; Correlation between gliotoxin production and virulence of Aspergillus fumigatus in G alleria mellonella . Mycopathologia158:73–79 [CrossRef][PubMed]
    [Google Scholar]
  61. Reis O., Sousa S., Camejo A., Villiers V., Gouin E., Cossart P., Cabanes D.. 2010; LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis202:551–562 [CrossRef][PubMed]
    [Google Scholar]
  62. Renzoni A., Klarsfeld A., Dramsi S., Cossart P.. 1997; Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun65:1515–1518[PubMed]
    [Google Scholar]
  63. Rocourt J ., Brosch R.. 1992; Human listeriosis: 1990 Document WHO/HPP/FOS/92.4 Geneva: World Health Organization;
    [Google Scholar]
  64. Sampathkumar B., Tsougriani E., Yu L. S. L., Khachatourians G. G.. 1998; A quantitative microtiter plate hemolysis assay for Listeria monocytogenes . Journal of Food Safety18:197–203[CrossRef]
    [Google Scholar]
  65. Schell M. A., Lipscomb L., DeShazer D.. 2008; Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei . J Bacteriol190:2306–2313 [CrossRef][PubMed]
    [Google Scholar]
  66. Schuchat A., Swaminathan B., Broome C. V.. 1991; Epidemiology of human listeriosis. Clin Microbiol Rev4:169–183[PubMed][CrossRef]
    [Google Scholar]
  67. Seed K. D., Dennis J. J.. 2008; Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun76:1267–1275 [CrossRef][PubMed]
    [Google Scholar]
  68. Seitz V., Clermont A., Wedde M., Hummel M., Vilcinskas A., Schlatterer K., Podsiadlowski L.. 2003; Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol27:207–215 [CrossRef][PubMed]
    [Google Scholar]
  69. Shipradeep S., Sahay Khare R., Ojha S., Kundu K., Kundu S.. 2012; Development of probiotic candidate in combination with essential oils from medicinal plant and their effect on enteric pathogens: A review. Gastroenterol Res Pract2012:457150 [CrossRef][PubMed]
    [Google Scholar]
  70. Smith-Palmer A., Stewartt J., Fyfe L.. 2002; Inhibition of listeriolysin O and phosphatidylcholine-specific production in Listeria monocytogenes by subinhibitory concentrations of plant essential oils. J Med Microbiol51:567–574 [CrossRef][PubMed]
    [Google Scholar]
  71. Somer L., Kashi Y.. 2003; A PCR method based on 16S RRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products. J Food Prot66:1658–1665[PubMed]
    [Google Scholar]
  72. Southwick F. S., Purich D. L.. 1996; Intracellular pathogenesis of listeriosis. N Engl J Med334:770–776 [CrossRef][PubMed]
    [Google Scholar]
  73. Swaminathan B., Gerner-Smidt P.. 2007; The epidemiology of human listeriosis. Microbes Infect9:1236–1243 [CrossRef][PubMed]
    [Google Scholar]
  74. Thong B. Y., Tan T. C.. 2011; Epidemiology and risk factors for drug allergy. Br J Clin Pharmacol71:684–700 [CrossRef][PubMed]
    [Google Scholar]
  75. Tsui W. H., Yim G., Wang H. H., McClure J. E., Surette M. G., Davies J.. 2004; Dual effects of MLS antibiotics: Transcriptional modulation and interactions on the ribosome. Chem& Biol 11:1307–1316 [CrossRef][PubMed]
    [Google Scholar]
  76. Tzouvelekis L. S., Mentis A. F., Makris A. M., Spiliadis C., Blackwell C., Weir D. M.. 1991; In vitro binding of Helicobacter pylori to human gastric mucin. Infect Immun59:4252–4254[PubMed]
    [Google Scholar]
  77. Upadhyay A., Johny A. K., Amalaradjou M. A., Ananda Baskaran S., Kim K. S., Venkitanarayanan K.. 2012; Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors. Int J Food Microbiol157:88–94 [CrossRef][PubMed]
    [Google Scholar]
  78. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J.. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev14:584–640 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000251
Loading
/content/journal/jmm/10.1099/jmm.0.000251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error