1887

Abstract

is a human enteric pathogen that causes severe foodborne illness in high-risk populations. Crossing the intestinal barrier is the first critical step for infection. Therefore, reducing colonization and invasion of intestinal epithelium and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentration (SIC) of the plant-derived antimicrobial eugenol, either alone, or in combination with five lactic acid bacteria (LAB), namely (NRRL-B41410), (B-14172), (B-1840), (B-4496) and subspecies (B-633) in reducing adhesion to and invasion of human intestinal epithelial cells (Caco-2). Additionally, the effect of the aforementioned treatments on listeriolysin production, epithelial E-cadherin binding and expression of virulence genes was investigated. Moreover, the efficacy of eugenol-LAB treatments in reducing virulence in the invertebrate model was studied. Eugenol and LAB, either alone or in combination, significantly reduced adhesion to and invasion of intestinal cells (< 0.05). Moreover, eugenol-LAB treatments decreased haemolysin production, E-cadherin binding and virulence gene expression (< 0.05). In addition, the eugenol-LAB treatments significantly enhanced the survival rates of infected with lethal doses of (< 0.05). The results highlight the antilisterial effect of eugenol either alone or in combination with LAB, and justify further investigations in a mammalian model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000251
2016-06-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/6/443.html?itemId=/content/journal/jmm/10.1099/jmm.0.000251&mimeType=html&fmt=ahah

References

  1. Altincicek B., Vilcinskas A. 2006; Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella . Dev Comp Immunol 30:1108–1118 [View Article][PubMed]
    [Google Scholar]
  2. Altincicek B., Knorr E., Vilcinskas A. 2008; Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum . Dev Comp Immunol 32:585–595 [View Article][PubMed]
    [Google Scholar]
  3. Altincicek B., Linder M., Linder D., Preissner K. T., Vilcinskas A. 2007; Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella . Infect Immun 75:175–183 [View Article][PubMed]
    [Google Scholar]
  4. Alvarez-Domínguez C., Vázquez-Boland J. A., Carrasco-Marín E., López-Mato P., Leyva-Cobián F. 1997; Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88[PubMed]
    [Google Scholar]
  5. Amalaradjou M. A., Narayanan A., Venkitanarayanan K. 2011; Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. J Urol 185:1526–1531 [View Article][PubMed]
    [Google Scholar]
  6. Amalaradjou M. A., Narayanan A., Baskaran S. A., Venkitanarayanan K. 2010; Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli . J Urol 184:358–363 [View Article][PubMed]
    [Google Scholar]
  7. Aura A.-M. 2008; Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 7:407–429 [CrossRef]
    [Google Scholar]
  8. Bhakdi S., Roth M., Sziegoleit A., Tranum-Jensen J. 1984; Isolation and identification of two hemolytic forms of streptolysin-O. Infect Immun 46:394–400[PubMed]
    [Google Scholar]
  9. Bikandi J., San Millán R., Rementeria A., Garaizar J. 2004; In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20:798–799 [View Article][PubMed]
    [Google Scholar]
  10. Birmingham C. L., Canadien V., Gouin E., Troy E. B., Yoshimori T., Cossart P., Higgins D. E., Brumell J. H. 2007; Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451 [View Article][PubMed]
    [Google Scholar]
  11. Bomba A., Nemcová R., Gancarcíková S., Herich R., Guba P., Mudronová D. 2002; Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. Br J Nutr 88:Suppl. 1S95–99 [View Article][PubMed]
    [Google Scholar]
  12. Bonazzi M., Lecuit M., Cossart P. 2009; Listeria monocytogenes internalin and e-cadherin: From structure to pathogenesis. Cell Microbiol 11:693–702 [View Article][PubMed]
    [Google Scholar]
  13. Brehm K., Kreft J., Ripio M. T., Vázquez-Boland J. A. 1996; Regulation of virulence gene expression in pathogenic Listeria . Microbiología (Madrid, Spain) 12:219–236[PubMed]
    [Google Scholar]
  14. Brown K., DeCoffe D., Molcan E., Gibson D. L. 2012; Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095–1119 [View Article][PubMed]
    [Google Scholar]
  15. Burkholder K. M., Kim K. P., Mishra K. K., Medina S., Hahm B. K., Kim H., Bhunia A. K. 2009; Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect 11:859–867 [View Article][PubMed]
    [Google Scholar]
  16. Cabanes D., Dussurget O., Dehoux P., Cossart P. 2004; Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 51:1601–1614 [View Article][PubMed]
    [Google Scholar]
  17. Cartwright E. J., Jackson K. A., Johnson S. D., Graves L. M., Silk B. J., Mahon B. E. 2013; Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis 19:1–9 [View Article][PubMed]
    [Google Scholar]
  18. Cekmez F., Tayman C., Saglam C., Cetinkaya M., Bedir O., Gnal A., Tun T., Sarici SÜ. 2012; Well-known but rare pathogen in neonates: Listeria monocytogenes. Eur Rev Med Pharmacol Sci 16:58–61[PubMed]
    [Google Scholar]
  19. Corr S., Hill C., Gahan C. G. 2006; An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog 41:241–250 [View Article][PubMed]
    [Google Scholar]
  20. Cotter G., Doyle S., Kavanagh K. 2000; Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169 [View Article][PubMed]
    [Google Scholar]
  21. Di Pasqua R., De Feo V., Villani F., Mauriello G. 2005; In vitro antimicrobial activity of essential oils from Mediterranean Apiaceae, Verbenaceae and Lamiaceae against pathogens and spoilage bacteria. Annals in Microbiology 55:139–143
    [Google Scholar]
  22. Dominguez-Bello M. G., Blaser M. J. 2008; Do you have a probiotic in your future?. Microbes Infect 10:1072–1076 [View Article][PubMed]
    [Google Scholar]
  23. Duncan S. H., Belenguer A., Holtrop G., Johnstone A. M., Flint H. J., Lobley G. E. 2007; Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078 [View Article][PubMed]
    [Google Scholar]
  24. Dutra V., Silva A. C., Cabrita P., Peres C., Malcata X., Brito L. 2015; Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food borne pathogens in HT-29 and vero cell cultures. J Med Microbiol (Epub ahead of print) [View Article][PubMed]
    [Google Scholar]
  25. Farber J. M., Peterkin P. I. 1991; Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511[PubMed]
    [Google Scholar]
  26. Fedhila S., Daou N., Lereclus D., Nielsen-LeRoux C. 2006; Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355 [View Article][PubMed]
    [Google Scholar]
  27. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141 [View Article][PubMed]
    [Google Scholar]
  28. Ghosh S., Dai C., Brown K., Rajendiran E., Makarenko S., Baker J., Ma C., Halder S., Montero M. et al. 2011; Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 301:G39–49 [View Article][PubMed]
    [Google Scholar]
  29. Gill A. O., Holley R. A. 2004; Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei . Appl Environ Microbiol 70:5750–5755 [View Article][PubMed]
    [Google Scholar]
  30. Goh E. B., Yim G., Tsui W., McClure J., Surette M. G., Davies J. 2002; Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030 [View Article][PubMed]
    [Google Scholar]
  31. Greiffenberg L., Goebel W., Kim K. S., Weiglein I., Bubert A., Engelbrecht F., Stins M., Kuhn M. 1998; Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66:5260–5267[PubMed]
    [Google Scholar]
  32. Gründling A., Gonzalez M. D., Higgins D. E. 2003; Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol 185:6295–6307 [View Article][PubMed]
    [Google Scholar]
  33. Hawrelak J. A., Cattley T., Myers S. P. 2009; Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern Med Rev 14:380–384[PubMed]
    [Google Scholar]
  34. Insua J. L., Llobet E., Moranta D., Pérez-Gutiérrez C., Tomás A., Garmendia J., Bengoechea J. A. 2013; Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella . Infect Immun 81:3552–3565 [View Article][PubMed]
    [Google Scholar]
  35. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845 [View Article][PubMed]
    [Google Scholar]
  36. Johny A. K., Hoagland T., Venkitanarayanan K. 2010; Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant salmonella enterica serovar typhimurium DT104 to antibiotics. Foodborne Pathog Dis 7:1165–1170 [View Article][PubMed]
    [Google Scholar]
  37. Joyce S. A., Gahan C. G. 2010; Molecular pathogenesis of Listeria monocytogenes in the alternative model host G alleria mellonella . Microbiology 156:3456–3468 [View Article][PubMed]
    [Google Scholar]
  38. Kocks C., Gouin E., Tabouret M., Berche P., Ohayon H., Cossart P. 1992; L. monocytogenes-induced actin assembly requires the acta gene product, a surface protein. Cell 68:521–531 [View Article][PubMed]
    [Google Scholar]
  39. Krawczyk-Balska A., Marchlewicz J., Dudek D., Wasiak K., Samluk A. 2012; Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of β-lactam tolerance and innate resistance to cephalosporins. BMC Microbiol 12:278 [View Article][PubMed]
    [Google Scholar]
  40. Kreft J., Vázquez-Boland J. A. 2001; Regulation of virulence genes in Listeria . Int J Med Microbiol 291:145–157 [View Article][PubMed]
    [Google Scholar]
  41. Lambrechts A., Gevaert K., Cossart P., Vandekerckhove J., Van Troys M. 2008; Listeria comet tails: The actin-based motility machinery at work. Trends Cell Biol 18:220–227 [View Article][PubMed]
    [Google Scholar]
  42. Laparra J. M., Sanz Y. 2010; Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225 [View Article][PubMed]
    [Google Scholar]
  43. Larrosa M., Yañéz-Gascón M. J., Selma M. V., González-Sarrías A., Toti S., Cerón J. J., Tomás-Barberán F., Dolara P., Espín J. C. 2009; Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 57:2211–2220 [View Article][PubMed]
    [Google Scholar]
  44. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. 2006; Microbial ecology: Human gut microbes associated with obesity. Nat New Biol 444:1022–1023 [View Article]
    [Google Scholar]
  45. Lingnau A., Domann E., Hudel M., Bock M., Nichterlein T., Wehland J., Chakraborty T. 1995; Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by Prfa-dependent and -independent mechanisms. Infect Immun 63:3896–3903[PubMed]
    [Google Scholar]
  46. Marco A. J., Altimira J., Prats N., López S., Dominguez L., Domingo M., Briones V. 1997; Penetration of Listeria monocytogenes in mice infected by the oral route. Microb Pathog 23:255–263 [View Article][PubMed]
    [Google Scholar]
  47. Marquis H., Hager E. J. 2000; pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes . Mol Microbiol 35:289–298 [View Article][PubMed]
    [Google Scholar]
  48. Miyata S., Casey M., Frank D. W., Ausubel F. M., Drenkard E. 2003; Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in P seudomonas aeruginosa pathogenesis. Infect Immun 71:2404–2413 [View Article][PubMed]
    [Google Scholar]
  49. Moroni O., Kheadr E., Boutin Y., Lacroix C., Fliss I. 2006; Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl Environ Microbiol 72:6894–6901 [View Article][PubMed]
    [Google Scholar]
  50. Mukherjee K., Altincicek B., Hain T., Domann E., Vilcinskas A., Chakraborty T. 2010; Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76:310–317 [View Article][PubMed]
    [Google Scholar]
  51. Mukherjee K., Abu Mraheil M., Silva S., Müller D., Cemic F., Hemberger J., Hain T., Vilcinskas A., Chakraborty T. 2011; Anti-Listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol 77:4237–4240 [View Article][PubMed]
    [Google Scholar]
  52. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A. 2005; Galleria mellonella as a model system to study C ryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850 [View Article][PubMed]
    [Google Scholar]
  53. Ollinger J., Bowen B., Wiedmann M., Boor K. J., Bergholz T. M. 2009; Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect Immun 77:2113–2124 [View Article][PubMed]
    [Google Scholar]
  54. Pandiripally V. K., Westbrook D. G., Sunki G. R., Bhunia A. K. 1999; Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124 [View Article][PubMed]
    [Google Scholar]
  55. Park J. H., Lee Y. S., Lim Y. K., Kwon S. H., Lee C. U., Yoon B. S. 2000; Specific binding of recombinant Listeria monocytogenes p60 protein to Caco-2 cells. FEMS Microbiol Lett 186:35–40 [View Article][PubMed]
    [Google Scholar]
  56. Peleg A. Y., Jara S., Monga D., Eliopoulos G. M., Moellering R. C., Mylonakis E. 2009; Galleria mellonella as a model system to study A cinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53:2605–2609 [View Article]
    [Google Scholar]
  57. Portnoy D. A., Auerbuch V., Glomski I. J. 2002; The cell biology of Listeria monocytogenes infection: The intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158:409–414 [View Article][PubMed]
    [Google Scholar]
  58. Prakash R., Bharathi Raja S., Devaraj H., Devaraj S. N. 2011; Up-regulation of MUC2 and Il-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. PLoS One 6:e27046 [View Article][PubMed]
    [Google Scholar]
  59. Qiu J., Feng H., Lu J., Xiang H., Wang D., Dong J., Wang J., Wang X., Liu J., Deng X. 2010; Eugenol reduces the expression of virulence-related exoproteins in S taphylococcus aureus . Appl Environ Microbiol 76:5846–5851 [View Article][PubMed]
    [Google Scholar]
  60. Reeves E. P., Messina C. G., Doyle S., Kavanagh K. 2004; Correlation between gliotoxin production and virulence of Aspergillus fumigatus in G alleria mellonella . Mycopathologia 158:73–79 [View Article][PubMed]
    [Google Scholar]
  61. Reis O., Sousa S., Camejo A., Villiers V., Gouin E., Cossart P., Cabanes D. 2010; LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202:551–562 [View Article][PubMed]
    [Google Scholar]
  62. Renzoni A., Klarsfeld A., Dramsi S., Cossart P. 1997; Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 65:1515–1518[PubMed]
    [Google Scholar]
  63. Rocourt J ., Brosch R. 1992 Human listeriosis: 1990 Document WHO/HPP/FOS/92.4 Geneva: World Health Organization;
    [Google Scholar]
  64. Sampathkumar B., Tsougriani E., Yu L. S. L., Khachatourians G. G. 1998; A quantitative microtiter plate hemolysis assay for Listeria monocytogenes . Journal of Food Safety 18:197–203 [CrossRef]
    [Google Scholar]
  65. Schell M. A., Lipscomb L., DeShazer D. 2008; Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei . J Bacteriol 190:2306–2313 [View Article][PubMed]
    [Google Scholar]
  66. Schuchat A., Swaminathan B., Broome C. V. 1991; Epidemiology of human listeriosis. Clin Microbiol Rev 4:169–183[PubMed] [CrossRef]
    [Google Scholar]
  67. Seed K. D., Dennis J. J. 2008; Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76:1267–1275 [View Article][PubMed]
    [Google Scholar]
  68. Seitz V., Clermont A., Wedde M., Hummel M., Vilcinskas A., Schlatterer K., Podsiadlowski L. 2003; Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215 [View Article][PubMed]
    [Google Scholar]
  69. Shipradeep S., Sahay Khare R., Ojha S., Kundu K., Kundu S. 2012; Development of probiotic candidate in combination with essential oils from medicinal plant and their effect on enteric pathogens: A review. Gastroenterol Res Pract 2012:457150 [View Article][PubMed]
    [Google Scholar]
  70. Smith-Palmer A., Stewartt J., Fyfe L. 2002; Inhibition of listeriolysin O and phosphatidylcholine-specific production in Listeria monocytogenes by subinhibitory concentrations of plant essential oils. J Med Microbiol 51:567–574 [View Article][PubMed]
    [Google Scholar]
  71. Somer L., Kashi Y. 2003; A PCR method based on 16S RRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products. J Food Prot 66:1658–1665[PubMed]
    [Google Scholar]
  72. Southwick F. S., Purich D. L. 1996; Intracellular pathogenesis of listeriosis. N Engl J Med 334:770–776 [View Article][PubMed]
    [Google Scholar]
  73. Swaminathan B., Gerner-Smidt P. 2007; The epidemiology of human listeriosis. Microbes Infect 9:1236–1243 [View Article][PubMed]
    [Google Scholar]
  74. Thong B. Y., Tan T. C. 2011; Epidemiology and risk factors for drug allergy. Br J Clin Pharmacol 71:684–700 [View Article][PubMed]
    [Google Scholar]
  75. Tsui W. H., Yim G., Wang H. H., McClure J. E., Surette M. G., Davies J. 2004; Dual effects of MLS antibiotics: Transcriptional modulation and interactions on the ribosome. Chem& Biol 11:1307–1316 [View Article][PubMed]
    [Google Scholar]
  76. Tzouvelekis L. S., Mentis A. F., Makris A. M., Spiliadis C., Blackwell C., Weir D. M. 1991; In vitro binding of Helicobacter pylori to human gastric mucin. Infect Immun 59:4252–4254[PubMed]
    [Google Scholar]
  77. Upadhyay A., Johny A. K., Amalaradjou M. A., Ananda Baskaran S., Kim K. S., Venkitanarayanan K. 2012; Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors. Int J Food Microbiol 157:88–94 [View Article][PubMed]
    [Google Scholar]
  78. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000251
Loading
/content/journal/jmm/10.1099/jmm.0.000251
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error