1887

Abstract

Many isolates of carrying referred to Public Health England’s national reference laboratory during 2014 and 2015 shared similar pulsed-field gel electrophoresis (PFGE) profiles, despite coming from patients in multiple different hospitals and regions. Whole genome sequencing on an Illumina platform revealed that these belonged to sequence type (ST) 38. The OXA-48 gene is usually carried on a 62 kb IncL/M plasmid (pOXA48a), but those belonging to this ST appeared either to lack plasmid elements or to have only a partial complement. Two isolates, one belonging to a main cluster sharing identical PFGE profiles and the other having a distinct profile, were further sequenced on a minION. The long reads provided by the nanopore sequencing technology facilitated assembly of a much larger contig around the region, showing that both isolates shared a similar arrangement, with a plasmid fragment containing flanked by IS elements integrated into the chromosome, although the length of the plasmid fragment and the insertion site differed between the two isolates. That belonging to the main cluster contained a 21.9 kb Tn insert, as previously described in EC-15 from Lebanon, but in a different insertion site. PCR mapping indicated that a further 14/31 representatives of this cluster also contained this insert in the same insertion site, with most of the remainder differing only by having additional sequence on one side of the insertion. This sub-cluster of ST38 was found from 25 different hospital laboratories, suggesting widespread distribution of a successful type.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000248
2016-06-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/6/538.html?itemId=/content/journal/jmm/10.1099/jmm.0.000248&mimeType=html&fmt=ahah

References

  1. Al Bayssari C., Olaitan A. O., Dabboussi F., Hamze M., Rolain J. M..( 2015;). Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. . Antimicrob Agents Chemother 59: 745–746. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ashton P. M., Nair S., Dallman T., Rubino S., Rabsch W., Mwaigwisya S., Wain J., O'Grady J..( 2015;). MinION nanopore sequencing identifies the position and structure of a bacterial anti biotic resistance island. . Nat Biotechnol 33: 296–300. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S., other authors.( 2012;). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol 19: 455–477. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beyrouthy R., Robin F., Delmas J., Gibold L., Dalmasso G., Dabboussi F., Hamze M., Bonnet R..( 2014;). IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the Escherichia coli chromosome. . Antimicrob Agents Chemother 58: 3785–3790. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chattaway M. A., Jenkins C., Ciesielczuk H., Day M., DoNascimento V., Day M., Rodríguez I., van Essen-Zandbergen A., other authors.( 2014;). Evidence of evolving extraintestinal enteroaggregative Escherichia coli ST38 clone. . Emerg Infect Dis 20: 1935–1937. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dimou V., Dhanji H., Pike R., Livermore D. M., Woodford N..( 2012;). Characterization of Enterobacteriaceae producing OXA-48-like carbapenemases in the UK. . J Antimicrob Chemother 67: 1660–1665. [CrossRef] [PubMed]
    [Google Scholar]
  7. Jeong H., Barbe V., Lee C. H., Vallenet D., Yu D. S., Choi S. H., Couloux A., Lee S. W., Yoon S. H., other authors.( 2009;). Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). . J Mol Biol 394: 644–652. [CrossRef] [PubMed]
    [Google Scholar]
  8. Österblad M., Kirveskari J., Hakanen A. J., Tissari P., Vaara M., Jalava J..( 2012;). Carbapenemase-producing Enterobacteriaceae in Finland: The first years (2008-11). . J Antimicrob Chemother 67: 2860–2864. [CrossRef] [PubMed]
    [Google Scholar]
  9. Poirel L., Bernabeu S., Fortineau N., Podglajen I., Lawrence C., Nordmann P..( 2011;). Emergence of OXA-48-producing Escherichia coli clone ST38 in France. . Antimicrob Agents Chemother 55: 4937–4938. [CrossRef] [PubMed]
    [Google Scholar]
  10. Poirel L., Bonnin R. A., Nordmann P..( 2012;). Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. . Antimicrob Agents Chemother 56: 559–562. [CrossRef] [PubMed]
    [Google Scholar]
  11. Poirel L., Heritier C., Tolun V., Nordmann P..( 2004;). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. . Antimicrob Agents Chemother 48: 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  12. Potron A., Poirel L., Rondinaud E., Nordmann P..( 2013;). Inter continental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. . Euro Surveill 18:. [CrossRef] [PubMed]
    [Google Scholar]
  13. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). MEGA6: Molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  14. Turton J. F., Wright L., Underwood A., Witney A. A., Chan Y. T., Al-Shahib A., Arnold C., Doumith M., Patel B., other authors .( 2015;). High-Resolution analysis by whole-Genome Sequencing of an Inter national Lineage (Sequence Type 111) of Pseudomonas aeruginosa associated with metallo-carbapenemases in the United Kingdom. . J Clin Microbiol 53: 2622–2631. [CrossRef] [PubMed]
    [Google Scholar]
  15. Woodford N., Ward M. E., Kaufmann M. E., Turton J., Fagan E. J., James D., Johnson A. P., Pike R., Warner M., other authors.( 2004;). Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. . J Antimicrob Chemother 54: 735–743. [CrossRef] [PubMed]
    [Google Scholar]
  16. Zurfluh K., Nüesch-Inderbinen M. T., Poirel L., Nordmann P., Hächler H., Stephan R..( 2015;). Emergence of Escherichia coli producing OXA-48 β-lactamase in the community in Switzerland. . Antimicrob Resist Infect Control 4: 9. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000248
Loading
/content/journal/jmm/10.1099/jmm.0.000248
Loading

Data & Media loading...

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error