1887

Abstract

Multiple studies have shown that the antibacterial dressing Acticoat can inhibit growth of bacteria but is unable to completely clear a wound of infection, which could leave patients vulnerable to sepsis. Agar inoculated with four different strains and overlain with Acticoat showed growth inhibition beneath and within a 1 mm perimeter of the dressing after 24 h. When lifted from inoculated agar and briefly blotted onto fresh agar plates, Acticoat transferred viable bacteria. Scanning electron microscopy of the surface of Acticoat that overlaid meticillin-resistant for 24, 48 and 72 h showed dense clusters of apparently undamaged bacteria distributed across the mesh. The number of bacteria growing on inoculated pig skin, underneath and on the surface of Acticoat, was lower than on controls for the first 8 h, but after 24 h the number of bacteria on the skin was 2.3-fold greater than the untreated controls. In contrast, after 24 h the number of bacteria surviving on the surface of the Acticoat was 11.9 % of controls. Acticoat moistened with 10 % glycerol plus antimicrobial peptides (AMPs) mel12–26 or bac8c (50 μg ml) reduced the numbers of bacteria on the dressing and on the skin underneath to below 10 % and 0.01 % of the controls, respectively. When lysozyme (1 mg ml) was added to Acticoat wetted with glycerol and the AMP bac8c, the dressing was able to prevent the survival of bacteria on densely inoculated pig skin and on the surface of Acticoat for up to 24 h. In effect, biocompatible solvents and AMPs significantly enhance the bactericidal efficacy of Acticoat.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000246
2016-05-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/397.html?itemId=/content/journal/jmm/10.1099/jmm.0.000246&mimeType=html&fmt=ahah

References

  1. Alexander J. W.. 2009; History of the medical use of silver. Surg Infect (Larchmt)10:289–292 [CrossRef][PubMed]
    [Google Scholar]
  2. Anas A., Jiya J., Rameez M. J., Anand P. B., Anantharaman M. R., Nair S.. 2013; Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium. Lett Appl Microbiol56:57–62 [CrossRef][PubMed]
    [Google Scholar]
  3. Arakawa H., Neault J. F., Tajmir-Riahi H. A.. 2001; Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J81:1580–1587 [CrossRef][PubMed]
    [Google Scholar]
  4. Betz S. F.. 1993; Disulfide bonds and the stability of globular proteins. Protein Sci2:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  5. Church D., Elsayed S., Reid O., Winston B., Lindsay R.. 2006; Burn wound infections. Clin Microbiol Rev19:403–434 [CrossRef][PubMed]
    [Google Scholar]
  6. Coombs G., Pearson J., O'Brien F. G., Nimmo G., Christiansen K.. 2007; Staphylococcus aureus Programme 2005 (SAP 2005) Hospital Survey: MRSA Epidemiology and Typing Report. The Australian Group on Antimicrobial Resistance. http://www.agargroup.org/surveys/agar%20report%2008_11_07.pdf
  7. Coombs G., Pearson J., Nimmo G., Christiansen K.. 2012a; Staphylococcus aureus Programme 2011 (SAP 2011) Hospital-onset Survey: MRSA Epidemiology and Typing Report. The Australian Group on Antimicrobial Resistance. http://www.agargroup.org/files/SAP11%20MRSA%20TYPING%20REPORT%20FINAL%20PROTECTED.pdf
  8. Coombs G. W., Goering R. V., Chua K. Y. L., Monecke S., Howden B. P., Stinear T. P., Ehricht R., O'Brien F. G., Christiansen K. J.. 2012b; The molecular epidemiology of the highly virulent ST93 Australian community Staphylococcus aureus strain. PLoS One7:e43037 [CrossRef][PubMed]
    [Google Scholar]
  9. Crowe J. H., Whittam M. A., Chapman D., Crowe L. M.. 1984; Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta769:151–159 [CrossRef][PubMed]
    [Google Scholar]
  10. Department of Health 2011; Guidelines for Use of Nanocrystalline Silver Dressing – ActicoatTM Perth: Health Networks Branch, Department of Health, Western Australia;
    [Google Scholar]
  11. Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O.. 2000; A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res52:662–668 [CrossRef][PubMed]
    [Google Scholar]
  12. Fong J., Wood F.. 2006; Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine1:441–449 [CrossRef][PubMed]
    [Google Scholar]
  13. Ganz T.. 2003; The role of antimicrobial peptides in innate immunity. Integr Comp Biol43:300–304 [CrossRef][PubMed]
    [Google Scholar]
  14. Hamamoto K., Kida Y., Zhang Y., Shimizu T., Kuwano K.. 2002; Antimicrobial activity and stability to proteolysis of small linear cationic peptides with d-amino acid substitutions. Microbiol Immunol46:741–749 [CrossRef][PubMed]
    [Google Scholar]
  15. Jung W. K., Koo H. C., Kim K. W., Shin S., Kim S. H., Park Y. H.. 2008; Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol74:2171–2178 [CrossRef][PubMed]
    [Google Scholar]
  16. Matsuzaki K.. 2009; Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta1788:1687–1692 [CrossRef][PubMed]
    [Google Scholar]
  17. Morones-Ramirez J. R., Winkler J. A., Spina C. S., Collins J. J.. 2013; Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med5:190ra81 [CrossRef][PubMed]
    [Google Scholar]
  18. Mulley G., Jenkins A. T. A., Waterfield N. R.. 2014; Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS One9:e94409 [CrossRef][PubMed]
    [Google Scholar]
  19. Park H.-J., Kim J. Y., Kim J., Lee J.-H., Hahn J.-S., Gu M. B., Yoon J.. 2009; Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res43:1027–1032 [CrossRef][PubMed]
    [Google Scholar]
  20. Prabhu S., Poulose E.. 2012; Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett2:32 [CrossRef]
    [Google Scholar]
  21. Pushpanathan M., Gunasekaran P., Rajendhran J.. 2013; Antimicrobial peptides: versatile biological properties. Int J Pept2013:675391 [CrossRef][PubMed]
    [Google Scholar]
  22. Ratnayake K., Joyce D. C., Webb R. I.. 2012; A convenient sample preparation protocol for scanning electron microscope examination of xylem-occluding bacterial biofilm on cut flowers and foliage. Sci Hortic (Amsterdam)140:12–18 [CrossRef]
    [Google Scholar]
  23. Rozek A., Powers J.-P.S., Friedrich C. L., Hancock R. E. W.. 2003; Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry42:14130–14138 [CrossRef][PubMed]
    [Google Scholar]
  24. Seo M.-D., Won H.-S., Kim J.-H., Mishig-Ochir T., Lee B.-J.. 2012; Antimicrobial peptides for therapeutic applications: a review. Molecules17:12276–12286 [CrossRef][PubMed]
    [Google Scholar]
  25. Sondi I., Salopek-Sondi B.. 2004; Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci275:177–182 [CrossRef][PubMed]
    [Google Scholar]
  26. Spindler E. C., Hale J. D. F., Giddings T.H., Jr, Hancock R. E. W., Gill R. T.. 2011; Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob Agents Chemother55:1706–1716 [CrossRef][PubMed]
    [Google Scholar]
  27. Stashak T. S., Farstvedt E., Othic A.. 2004; Update on wound dressings: indications and best use. Clin Tech Equine Pract3:148–163 [CrossRef]
    [Google Scholar]
  28. Supp A. P., Neely A. N., Supp D. M., Warden G. D., Boyce S. T.. 2005; Evaluation of cytotoxicity and antimicrobial activity of Acticoat Burn Dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil26:238–246[PubMed]
    [Google Scholar]
  29. Tian J., Wong K. K. Y., Ho C.-M., Lok C.-N., Yu W.-Y., Che C.-M., Chiu J.-F., Tam P. K. H.. 2007; Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem2:129–136 [CrossRef][PubMed]
    [Google Scholar]
  30. Ulkür E., Oncül O., Karagöz H., Celiköz B., Cavuşlu S.. 2005; Comparison of silver-coated dressing (ActicoatTM), chlorhexidine acetate 0.5% (Bactigrass®), and silver sulfadiazine 1% (Silverdin®) for topical antibacterial effect in Pseudomonas aeruginosa-contaminated, full-skin thickness burn wounds in rats. J Burn Care Rehabil26:430–433 [CrossRef][PubMed]
    [Google Scholar]
  31. Wiesner J., Vilcinskas A.. 2010; Antimicrobial peptides: the ancient arm of the human immune system. Virulence1:440–464 [CrossRef][PubMed]
    [Google Scholar]
  32. Wounds International 2012; Appropriate Use of Silver Dressings in Wounds. An Expert Working Group Consensus London: Wounds International;
    [Google Scholar]
  33. Xu F. F., Imlay J. A.. 2012; Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol78:3614–3621 [CrossRef][PubMed]
    [Google Scholar]
  34. Yan H., Li S., Sun X., Mi H., He B.. 2003; Individual substitution analogs of Mel(12–26), melittin's C-terminal 15-residue peptide: their antimicrobial and hemolytic actions. FEBS Lett554:100–104 [CrossRef][PubMed]
    [Google Scholar]
  35. Yeaman M. R., Yount N. Y.. 2003; Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev55:27–55 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000246
Loading
/content/journal/jmm/10.1099/jmm.0.000246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error