1887

Abstract

Our aim was to identify long-term β-lactam resistance trends in local isolates, which are a common cause of sepsis in Western Australia. We studied three collections of isolates from Western Australia between 1977 and 2015 comprising contemporary blood culture ( = 98), multiresistant ( = 21) and historical ( = 50) isolates. Antimicrobial resistance was determined by Clinical and Laboratory Standards Institute agar dilution methods. PCR DNA sequencing identified β-lactamase variants and porin mutations contributing to β-lactam resistance. Isolates were genotyped by PFGE, multilocus sequence typing and a variable number tandem repeat method. From 1989 onwards, we detected the SHV-2a extended-spectrum β-lactamase (ESBL) in ceftriaxone-resistant isolates, and in ceftazidime- and aztreonam-resistant isolates from 1993. Ceftriaxone, ceftazidime and aztreonam resistance persisted, with types becoming the dominant ESBLs by 2010. CTX-M-15 was encountered in both multiresistant and blood culture isolates. Meropenem resistance was detected for the first time in 2011 in a locally isolated -positive . We found sequence types ST23 and ST86 that occurred in multiple isolates from invasive infections. ST86 was the most common and maintained a high degree (90 %) of similarity by PFGE since 1977. Ceftazidime-resistant sequence types have caused invasive infections in Western Australia since 1993. Invasive isolates producing CTX-M-14 and CTX-M-15 appeared in Western Australia during the last decade, before the appearance of carbapenemases. The diversity of β-lactam resistance and β-lactamase resistance mechanisms in Western Australian has increased since ESBLs were first described locally.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000242
2016-05-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/429.html?itemId=/content/journal/jmm/10.1099/jmm.0.000242&mimeType=html&fmt=ahah

References

  1. Arakawa Y., Ohta M., Kido N., Mori M., Ito H., Komatsu T., Fujii Y., Kato N.. 1989; Chromosomal beta-lactamase of Klebsiella oxytoca, a new class A enzyme that hydrolyzes broad-spectrum beta-lactam antibiotics. Antimicrob Agents Chemother33:63–70 [CrossRef][PubMed]
    [Google Scholar]
  2. Bialek-Davenet S., Criscuolo A., Ailloud F., Passet V., Jones L., Delannoy-Vieillard A.-S., Garin B., Le Hello S., Arlet G., other authors. 2014; Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis20:1812–1820 [CrossRef][PubMed]
    [Google Scholar]
  3. Bochud P.-Y., Bonten M., Marchetti O., Calandra T.. 2004; Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med32:(Suppl)S495–S512 [CrossRef][PubMed]
    [Google Scholar]
  4. Cantón R., González-Alba J. M., Galán J.-C.. 2012; CTX-M enzymes: origin and diffusion. Front Microbiol3:110[PubMed][CrossRef]
    [Google Scholar]
  5. Castanheira M., Deshpande L. M., Mathai D., Bell J. M., Jones R. N., Mendes R. E.. 2011; Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob Agents Chemother55:1274–1278 [CrossRef][PubMed]
    [Google Scholar]
  6. Chang L. W. K., Buising K. L., Jeremiah C. J., Cronin K., Poy Lorenzo Y. S., Howden B. P., Kwong J., Cocks J., Blood A., other authors. 2015; Managing a nosocomial outbreak of carbapenem-resistant Klebsiella pneumoniae: an early Australian hospital experience. Intern Med J45:1037–1043 [CrossRef][PubMed]
    [Google Scholar]
  7. Chung D. R., Lee H. R., Lee S. S., Kim S. W., Chang H.-H., Jung S.-I., Oh M.-D., Ko K. S., Kang C.-I., other authors. 2008; Evidence for clonal dissemination of the serotype K1 Klebsiella pneumoniae strain causing invasive liver abscesses in Korea. J Clin Microbiol46:4061–4063 [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI 2011; Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G.. 2010; Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother65:490–495 [CrossRef][PubMed]
    [Google Scholar]
  10. Decré D., Verdet C., Emirian A., Le Gourrierec T., Petit J.-C., Offenstadt G., Maury E., Brisse S., Arlet G.. 2011; Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol49:3012–3014 [CrossRef][PubMed]
    [Google Scholar]
  11. Diancourt L., Passet V., Verhoef J., Grimont P. A. D., Brisse S.. 2005; Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol43:4178–4182 [CrossRef][PubMed]
    [Google Scholar]
  12. Dulku G., Tibballs J.. 2014; Cryptogenic invasive Klebsiella pneumoniae liver abscess syndrome (CIKPLA) in Western Australia?. Australas Med J7:436–440 [CrossRef][PubMed]
    [Google Scholar]
  13. Espedido B. A., Steen J. A., Ziochos H., Grimmond S. M., Cooper M. A., Gosbell I. B., van Hal S. J., Jensen S. O.. 2013; Whole genome sequencing analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution. PLoS One8:e59920 [CrossRef][PubMed]
    [Google Scholar]
  14. Fang C.-T., Chuang Y.-P., Shun C.-T., Chang S.-C., Wang J.-T.. 2004; A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med199:697–705 [CrossRef][PubMed]
    [Google Scholar]
  15. Fang H., Ataker F., Hedin G., Dornbusch K.. 2008; Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J Clin Microbiol46:707–712 [CrossRef][PubMed]
    [Google Scholar]
  16. Francisco A. P., Bugalho M., Ramirez M., Carriço J. A.. 2009; Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics10:152 [CrossRef][PubMed]
    [Google Scholar]
  17. Gomez-Simmonds A., Greenman M., Sullivan S. B., Tanner J. P., Sowash M. G., Whittier S., Uhlemann A.-C.. 2015; Population structure of Klebsiella pneumoniae causing bloodstream infections at a New York City tertiary care hospital: diversification of multidrug-resistant isolates. J Clin Microbiol53:2060–2067 [CrossRef][PubMed]
    [Google Scholar]
  18. Holt K. E., Wertheim H., Zadoks R. N., Baker S., Whitehouse C. A., Dance D., Jenney A., Connor T. R., Hsu L. Y., other authors. 2015; Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A112:E3574–E3581 [CrossRef][PubMed]
    [Google Scholar]
  19. Inglis T. J. J., Hodge M., Ketharanathan S.. 2008; A hospital-wide study of the impact of introducing a personal data assistant-augmented blood culture round. J Med Microbiol57:43–49 [CrossRef][PubMed]
    [Google Scholar]
  20. Ko W.-C., Paterson D. L., Sagnimeni A. J., Hansen D. S., Von Gottberg A., Mohapatra S., Casellas J. M., Goossens H., Mulazimoglu L., other authors. 2002; Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis8:160–166 [CrossRef][PubMed]
    [Google Scholar]
  21. Landman D., Bratu S., Quale J.. 2009; Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae . J Med Microbiol58:1303–1308 [CrossRef][PubMed]
    [Google Scholar]
  22. Livermore D. M., Canton R., Gniadkowski M., Nordmann P., Rossolini G. M., Arlet G., Ayala J., Coque T. M., Kern-Zdanowicz I., other authors. 2007; CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother59:165–174 [CrossRef][PubMed]
    [Google Scholar]
  23. Maslow J. N., Slutsky A. M., Arbeit R. D.. 1993; Application of pulsed-field gel electrophoresis to molecular epidemiology. In Diagnostic Molecular Microbiology: Principles and Applications pp563–572 Edited by Persing D. H., Smith T. F., Tenover F. C., White T. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Mulgrave L., Attwood P. V.. 1993; Characterization of an SHV-5 related extended broad-spectrum beta-lactamase in Enterobacteriaceae from Western Australia. Pathology25:71–75 [CrossRef][PubMed]
    [Google Scholar]
  25. Paterson D. L., Ko W.-C., Von Gottberg A., Mohapatra S., Casellas J. M., Goossens H., Mulazimoglu L., Trenholme G., Klugman K. P., other authors. 2004; Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis39:31–37 [CrossRef][PubMed]
    [Google Scholar]
  26. Peirano G., Laupland K. B., Gregson D. B., Pitout J. D. D.. 2011; Colonization of returning travelers with CTX-M-producing Escherichia coli . J Travel Med18:299–303 [CrossRef][PubMed]
    [Google Scholar]
  27. Pérez-Pérez F. J., Hanson N. D.. 2002; Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol40:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
  28. Queenan A. M., Bush K.. 2007; Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev20:440–458 [CrossRef][PubMed]
    [Google Scholar]
  29. Rhomberg P. R., Jones R. N.. 2009; Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999–2008). Diagn Microbiol Infect Dis65:414–426 [CrossRef][PubMed]
    [Google Scholar]
  30. Rogers B. A., Kennedy K. J., Sidjabat H. E., Jones M., Collignon P., Paterson D. L.. 2012; Prolonged carriage of resistant E. coli by returned travellers: clonality, risk factors and bacterial characteristics. Eur J Clin Microbiol Infect Dis31:2413–2420 [CrossRef][PubMed]
    [Google Scholar]
  31. Shin S. H., Kim S., Kim J. Y., Lee S., Um Y., Oh M.-K., Kim Y.-R., Lee J., Yang K.-S.. 2012; Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J Bacteriol194:2371–2372 [CrossRef][PubMed]
    [Google Scholar]
  32. Sidjabat H. E., Townell N., Nimmo G. R., George N. M., Robson J., Vohra R., Davis L., Heney C., Paterson D. L.. 2015; Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob Agents Chemother59:4059–4066 [CrossRef][PubMed]
    [Google Scholar]
  33. Siu L. K., Fung C.-P., Chang F.-Y., Lee N., Yeh K.-M., Koh T.-H., Ip M.. 2011; Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol49:3761–3765 [CrossRef][PubMed]
    [Google Scholar]
  34. Song W., Lee H., Lee K., Jeong S. H., Bae I. K., Kim J. S., Kwak H. S.. 2009; CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum β-lactamase in clinical isolates of Escherichia coli from Korea. J Med Microbiol58:261–266 [CrossRef][PubMed]
    [Google Scholar]
  35. Tai A. Y. C., Stuart R. L., Sidjabat H. E., Lemoh C. N., Rogers B. A., Graham M., Paterson D. L., Korman T. M.. 2015; Local acquisition and nosocomial transmission of Klebsiella pneumoniae harbouring the bla NDM-1 gene in Australia. Med J Aust202:270–271 [CrossRef][PubMed]
    [Google Scholar]
  36. Tsai Y. K., Fung C. P., Lin J. C., Chen J. H., Chang F. Y., Chen T. L., Siu L. K.. 2011; Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother55:1485–1493 [CrossRef][PubMed]
    [Google Scholar]
  37. Turnidge J., Gottlieb T., Bell J.. 2014a; Enterobacteriaceae Sepsis Outcome Programme (EnSOP) 2013 Antimicrobial Susceptibility Report. http://www.agargroup.org/files/AGAR%20EnSOP13%20Web%20Report%20FINAL%202.pdf
  38. Turnidge J. D., Gottlieb T., Mitchell D. H., Coombs G. W., Pearson J. C., Bell J. M., Australian Group on Antimicrobial Resistance. 2014b; Hospital-onset Gram-negative Surveillance Program annual report, 2011. Commun Dis Intell Q Rep38:E49–E53[PubMed]
    [Google Scholar]
  39. Turton J. F., Perry C., Elgohari S., Hampton C. V.. 2010; PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol59:541–547 [CrossRef][PubMed]
    [Google Scholar]
  40. Wiegand I., Hilpert K., Hancock R. E. W.. 2008; Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc3:163–175 [CrossRef][PubMed]
    [Google Scholar]
  41. Woodford N., Tierno P.M., Jr, Young K., Tysall L., Palepou M.-F.I., Ward E., Painter R. E., Suber D. F., Shungu D., other authors. 2004; Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother48:4793–4799 [CrossRef][PubMed]
    [Google Scholar]
  42. Yu V. L., Hansen D. S., Ko W.-C., Sagnimeni A., Klugman K. P., von Gottberg A., Goossens H., Wagener M. M., Benedí V. J., International Klebseilla Study Group. 2007; Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis13:986–993 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000242
Loading
/content/journal/jmm/10.1099/jmm.0.000242
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error