1887

Abstract

uses a type III secretion system to deliver toxic effector proteins directly into host cells and alter host protein functions. Exoenzyme S (ExoS), a type III effector protein, ADP-ribosylates Rab5 GTPase and impairs early phagocytic events in macrophage cells. In this study, we tested the hypothesis that Rin1, a Ras effector protein and Rab5 guanine nucleotide exchange factor, generates an intrinsic Rab5 activity cycle during phagocytosis of live ; thus, allowing proper phagocytic killing. We found that Rab5 activity was attenuated at a very early time point (2.5 min) of the phagocytic process of live but not of heat-inactivated . However, upon overexpressing Rin1 in macrophages, the Rab5 activity sustained for a prolonged time (∼20 min) counteracting the negative effects during phagocytosis of live Ras, also a substrate of the ADP-ribosyltransferase activity of ExoS, remained active during the early events of phagocytosis of live as well as heat-inactivated . Further examinations revealed that the Rin1 : Vps9 domain (the Rab5 nucleotide catalytic domain) and the Rin1 : RA domain (the Ras association domain of Rin1) are both required for optimal Rin1 function. Finally, the time-based analysis of the ADP-ribosylation status of Rab5 and Ras obtained from this study was consistent in the context of the regulation of (i) Rab5 activity by Rin1 : Vps9 domain and (ii) Ras interaction with Rin1 via the Rin1 : RA domain. These observations highlight a novel crosstalk between Rin1–Rab5 and Rin1–Ras complexes that offsets the anti-phagocytic effects of ExoS in macrophages.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000235
2016-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/351.html?itemId=/content/journal/jmm/10.1099/jmm.0.000235&mimeType=html&fmt=ahah

References

  1. Alix E., Mukherjee S., Roy C. R.. 2011; Subversion of membrane transport pathways by vacuolar pathogens. J Cell Biol195:943–952 [CrossRef][PubMed]
    [Google Scholar]
  2. Allen L.-A.H., Yang C., Pessin J. E.. 2002; Rate and extent of phagocytosis in macrophages lacking vamp3. J Leukoc Biol72:217–221[PubMed]
    [Google Scholar]
  3. Alvarez-Dominguez C., Stahl P. D.. 1999; Increased expression of Rab5a correlates directly with accelerated maturation of Listeria monocytogenes phagosomes. J Biol Chem274:11459–11462 [CrossRef][PubMed]
    [Google Scholar]
  4. Angus A. A., Evans D. J., Barbieri J. T., Fleiszig S. M.. 2010; The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells. Infect Immun78:4500–4510 [CrossRef][PubMed]
    [Google Scholar]
  5. Arora P. D., Chan M. W., Anderson R. A., Janmey P. A., McCulloch C. A.. 2005; Separate functions of gelsolin mediate sequential steps of collagen phagocytosis. Mol Biol Cell16:5175–5190 [CrossRef][PubMed]
    [Google Scholar]
  6. Bakondi E., Bai P., Erdélyi K., Szabó C., Gergely P., Virág L.. 2004; Cytoprotective effect of gallotannin in oxidatively stressed HaCaT keratinocytes: the role of poly(ADP-ribose) metabolism. Exp Dermatol13:170–178 [CrossRef][PubMed]
    [Google Scholar]
  7. Balaji K., Colicelli J.. 2013; RIN1 regulates cell migration through RAB5 GTPases and ABL tyrosine kinases. Commun Integr Biol6:e25421 [CrossRef][PubMed]
    [Google Scholar]
  8. Balaji K., French C. T., Miller J. F., Colicelli J.. 2014; The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic15:1206–1218 [CrossRef][PubMed]
    [Google Scholar]
  9. Barbieri M. A., Kohn A. D., Roth R. A., Stahl P. D.. 1998; Protein kinase B/akt and Rab5 mediate Ras activation of endocytosis. J Biol Chem273:19367–19370 [CrossRef][PubMed]
    [Google Scholar]
  10. Barbieri A. M., Sha Q., Bette-Bobillo P., Stahl P. D., Vidal M.. 2001; ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun69:5329–5334 [CrossRef][PubMed]
    [Google Scholar]
  11. Barbieri M. A., Kong C., Chen P. I., Horazdovsky B. F., Stahl P. D.. 2003; The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis. J Biol Chem278:32027–32036 [CrossRef][PubMed]
    [Google Scholar]
  12. Barbieri M. A., Fernandez-Pol S., Hunker C., Horazdovsky B. H., Stahl P. D.. 2004; Role of Rab5 in EGF receptor-mediated signal transduction. Eur J Cell Biol83:305–314 [CrossRef][PubMed]
    [Google Scholar]
  13. Botelho R. J., Harrison R. E., Stone J. C., Hancock J. F., Philips M. R., Jongstra-Bilen J., Mason D., Plumb J., Gold M. R., Grinstein S.. 2009; Localized diacylglycerol-dependent stimulation of Ras and Rap1 during phagocytosis. J Biol Chem284:28522–28532 [CrossRef][PubMed]
    [Google Scholar]
  14. Brumell J. H., Scidmore M. A.. 2007; Manipulation of Rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev71:636–652 [CrossRef][PubMed]
    [Google Scholar]
  15. Bucci C., Parton R. G., Mather I. H., Stunnenberg H., Simons K., Hoflack B., Zerial M.. 1992; The small GTPase Rab5 functions as a regulatory factor in the early endocytic pathway. Cell70:715–728 [CrossRef][PubMed]
    [Google Scholar]
  16. Burd C. G., Mustol P. A., Schu P. V., Emr S. D.. 1996; A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol Cell Biol16:2369–2377 [CrossRef][PubMed]
    [Google Scholar]
  17. Carney D. S., Davies B. A., Horazdovsky B. F.. 2006; Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol16:27–35 [CrossRef][PubMed]
    [Google Scholar]
  18. Clarke M., Engel U., Giorgione J., Müller-Taubenberger A., Prassler J., Veltman D., Gerisch G.. 2010; Curvature recognition and force generation in phagocytosis. BMC Biol8:154–157 [CrossRef][PubMed]
    [Google Scholar]
  19. Colicelli J., Nicolette C., Birchmeier C., Rodgers L., Riggs M., Wigler M.. 1991; Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A88:2913–2917 [CrossRef][PubMed]
    [Google Scholar]
  20. Coste I., Le Corf K., Kfoury A., Hmitou I., Druillennec S., Hainaut P., Eychene A., Lebecque S., Renno T.. 2010; Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J Clin Invest120:3663–3667 [CrossRef][PubMed]
    [Google Scholar]
  21. Deng Q., Barbieri J. T.. 2008; Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic9:1948–1957 [CrossRef][PubMed]
    [Google Scholar]
  22. Duclos S., Diez R., Garin J., Papadopoulou B., Descoteaux A., Stenmark H., Desjardins M.. 2000; Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J Cell Sci113:3531–3541[PubMed]
    [Google Scholar]
  23. Fraylick J. E., La Rocque J. R., Vincent T. S., Olson J. C.. 2001; Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun69:5318–5328 [CrossRef][PubMed]
    [Google Scholar]
  24. Galvis A., Balmaceda V., Giambini H., Conde A., Villasana Z., Fornes M. W., Barbieri M. A.. 2009a; Inhibition of early endosome fusion by Rab5-binding defective Ras interference 1 mutants. Arch Biochem Biophys482:83–95 [CrossRef][PubMed]
    [Google Scholar]
  25. Galvis A., Giambini H., Villasana Z., Barbieri M. A.. 2009b; Functional determinants of Ras interference 1 mutants required for their inhibitory activity on endocytosis. Exp Cell Res315:820–835 [CrossRef][PubMed]
    [Google Scholar]
  26. Ganesan A. K., Frank D. W., Misra R. P., Schmidt G., Barbieri J. T.. 1998; Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem273:7332–7337 [CrossRef][PubMed]
    [Google Scholar]
  27. Ganesan A. K., Vincent T. S., Olson J. C., Barbieri J. T.. 1999; Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem274:21823–21829 [CrossRef][PubMed]
    [Google Scholar]
  28. Goldová J., Ulrych A., Hercík K., Branny P.. 2011; A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics12:437 [CrossRef][PubMed]
    [Google Scholar]
  29. Gorvel J. P., Chavrier P., Zerial M., Gruenberg J.. 1991; Rab5 controls early endosome fusion in vitro. Cell64:915–925 [CrossRef][PubMed]
    [Google Scholar]
  30. Han L., Colicelli J.. 1995; A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol Cell Biol15:1318–1323 [CrossRef][PubMed]
    [Google Scholar]
  31. Han L., Wong D., Dhaka A., Afar D., White M., Xie W., Herschman H., Witte O., Colicelli J.. 1997; Protein binding and signaling properties of RIN1 suggest a unique effector function. Proc Natl Acad Sci U S A94:4954–4959 [CrossRef][PubMed]
    [Google Scholar]
  32. Horiuchi H., Lippé R., McBride H. M., Rubino M., Woodman P., Stenmark H., Rybin V., Wilm M., Ashman K., other authors. 1997; A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell90:1149–1159 [CrossRef][PubMed]
    [Google Scholar]
  33. Jansson A. L., Yasmin L., Warne P., Downward J., Palmer R. H., Hallberg B.. 2006; Exoenzyme S of Pseudomonas aeruginosa is not able to induce apoptosis when cells express activated proteins, such as Ras or protein kinase B/Akt. Cell Microbiol8:815–822 [CrossRef][PubMed]
    [Google Scholar]
  34. Kiel C., Wohlgemuth S., Rousseau F., Schymkowitz J., Ferkinghoff-Borg J., Wittinghofer F., Serrano L.. 2005; Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. J Mol Biol348:759–775 [CrossRef][PubMed]
    [Google Scholar]
  35. Kortholt A., van Haastert P. J.. 2008; Highlighting the role of Ras and Rap during Dictyostelium chemotaxis. Cell Signal20:1415–1422 [CrossRef][PubMed]
    [Google Scholar]
  36. Li G., D'Souza-Schorey C., Barbieri M. A., Cooper J. A., Stahl P. D.. 1997; Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J Biol Chem272:10337–10340 [CrossRef][PubMed]
    [Google Scholar]
  37. McGuffie E. M., Frank D. W., Vincent T. S., Olson J. C.. 1998; Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun66:2607–2613[PubMed]
    [Google Scholar]
  38. Mustafi S., Rivero N., Olson J. C., Stahl P. D., Barbieri M. A.. 2013; Regulation of Rab5 function during phagocytosis of live Pseudomonas aeruginosa in macrophages. Infect Immun81:2426–2436 [CrossRef][PubMed]
    [Google Scholar]
  39. Ponting C. P., Benjamin D. R.. 1996; A novel family of Ras-binding domains. Trends Biochem Sci21:422–425 [CrossRef][PubMed]
    [Google Scholar]
  40. Rangel S. M., Logan L. K., Hauser A. R.. 2014; The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio5:e01080–e01e14 [CrossRef][PubMed]
    [Google Scholar]
  41. Raoust E., Balloy V., Garcia-Verdugo I., Touqui L., Ramphal R., Chignard M.. 2009; Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One4:e7259 [CrossRef][PubMed]
    [Google Scholar]
  42. Roberts R. L., Barbieri M. A., Ullrich J., Stahl P. D.. 2000; Dynamics of Rab5 activation in endocytosis and phagocytosis. J Leukoc Biol68:627–632[PubMed]
    [Google Scholar]
  43. Sasaki A. T., Janetopoulos C., Lee S., Charest P. G., Takeda K., Sundheimer L. W., Meili R., Devreotes P. N., Firtel R. A.. 2007; G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol178:185–191 [CrossRef][PubMed]
    [Google Scholar]
  44. Simon N. C., Barbieri J. T.. 2014; Exoenzyme S ADP-ribosylates Rab5 effector sites to uncouple intracellular trafficking. Infect Immun82:21–28 [CrossRef][PubMed]
    [Google Scholar]
  45. Tall G. G., Barbieri M. A., Stahl P. D., Horazdovsky B. F.. 2001; Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell1:73–82 [CrossRef][PubMed]
    [Google Scholar]
  46. Vincent T. S., Fraylick J. E., McGuffie E. M., Olson J. C.. 1999; ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol32:1054–1064 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang Y., Waldron R. T., Dhaka A., Patel A., Riley M. M., Rozengurt E., Colicelli J.. 2002; The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol Cell Biol22:916–926 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhang Y., Deng Q., Barbieri J. T.. 2007; Intracellular localization of type III-delivered Pseudomonas ExoS with endosome vesicles. J Biol Chem282:13022–13032 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000235
Loading
/content/journal/jmm/10.1099/jmm.0.000235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error