1887

Abstract

Many clinically relevant biofilms are polymicrobial. Examining the effect of antimicrobials in a multispecies biofilm consortium is of great clinical importance. The goal of this study was to investigate the effect of different honey types against bacterial wound pathogens grown in multispecies biofilm and to test the antibiofilm activity of honey defensin-1 (Def-1) in its recombinant form. A modified Lubbock chronic wound biofilm formed by four bacterial species (, , and ) was used for evaluation of honey and recombinant bee-derived Def-1 antibiofilm efficacy. Recombinant Def-1 was prepared by heterologous expression in We showed that different types of honey (manuka and honeydew) were able to significantly reduce the cell viability of wound pathogens (, and ) in mature polymicrobial biofilm. None of the tested honeys showed the ability to eradicate in biofilm. In addition, recombinant Def-1 successfully reduced the viability of and cells within established polymicrobial biofilm after 24 and 48 h of treatment. Interestingly, recombinant Def-1 did not affect the viability of cells within the biofilm, whereas both natural honeys significantly reduced the viable bacteria. Although was highly resistant to Def-1, Def-1 significantly affected the biofilm formation of and after 24 h of treatment, most likely by inhibiting its extracellular polymeric substances production. In conclusion, our study revealed that honey and Def-1 are effective against established multispecies biofilm; however, grown in multispecies biofilm was resistant to both antimicrobials.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000227
2016-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/4/337.html?itemId=/content/journal/jmm/10.1099/jmm.0.000227&mimeType=html&fmt=ahah

References

  1. Alandejani T., Marsan J., Ferris W., Slinger R., Chan F.. ( 2009;). Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg 141: 114–118 [CrossRef] [PubMed].
    [Google Scholar]
  2. Attinger C., Wolcott R.. ( 2012;). Clinically addressing biofilm in chronic wounds. Adv Wound Care (New Rochelle) 1: 127–132 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bachanová K., Klaudiny J., Kopernicky J., Simuth J.. ( 2002;). Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33: 259–269 [CrossRef].
    [Google Scholar]
  4. Basualdo C., Sgroy V., Finola M. S., Marioli J. M.. ( 2007;). Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet Microbiol 124: 375–381 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bílikova K., Huang S. C., Lin I. P., Šimuth J., Peng C. C.. ( 2015;). Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 68: 190–196 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bjarnsholt T., Kirketerp-Møller K., Jensen P. O., Madsen K. G., Phipps R., Krogfelt K., Høiby N., Givskov M.. ( 2008;). Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16: 2–10 [CrossRef] [PubMed].
    [Google Scholar]
  7. Burmølle M., Webb J. S., Rao D., Hansen L. H., Sørensen S. J., Kjelleberg S.. ( 2006;). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72: 3916–3923 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cerˇovský V., Bém R.. ( 2014;). Lucifensins, the insect defensins of biomedical importance: the story behind maggot therapy. Pharmaceuticals 7: 251–264 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cooper R., Jenkins L., Hooper S.. ( 2014;). Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care 23: 93–104 [CrossRef] [PubMed].
    [Google Scholar]
  10. Costerton J. W., Stewart P. S.. ( 2001;). Battling biofilms. Sci Am 285: 74–81 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dalton T., Dowd S. E., Wolcott R. D., Sun Y., Watters C., Griswold J. A., Rumbaugh K. P.. ( 2011;). An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6: e27317 [CrossRef] [PubMed].
    [Google Scholar]
  12. Davis S. C., Ricotti C., Cazzaniga A., Welsh E., Eaglstein W. H., Mertz P. M.. ( 2008;). Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16: 23–29 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dosler S., Karaaslan E.. ( 2014;). Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62: 32–37 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dosler S., Mataraci E.. ( 2013;). In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49: 53–58 [CrossRef] [PubMed].
    [Google Scholar]
  15. Elias S., Banin E.. ( 2012;). Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36: 990–1004 [CrossRef] [PubMed].
    [Google Scholar]
  16. Fogaça A. C., Zaini P. A., Wulff N. A., da Silva P. I., Fázio M. A., Miranda A., Daffre S., da Silva A. M.. ( 2010;). Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa. FEMS Microbiol Lett 306: 152–159 [CrossRef] [PubMed].
    [Google Scholar]
  17. Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K.. ( 1990;). A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265: 11333–11337 [PubMed].
    [Google Scholar]
  18. Grande Burgos M. J., Pulido R. P., Del Carmen López Aguayo M., Gálvez A., Lucas R.. ( 2014;). The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci 15: 22706–22727 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hajská M., Slobodníková L., Hupková H., Koller J.. ( 2014;). In vitro efficacy of various topical antimicrobial agents in different time periods from contamination to application against 6 multidrug-resistant bacterial strains isolated from burn patients. Burns 40: 713–718 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hwang I. S., Hwang J. S., Hwang J. H., Choi H., Lee E., Kim Y., Lee D. G.. ( 2013;). Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr Microbiol 66: 56–60 [CrossRef] [PubMed].
    [Google Scholar]
  21. Klaudiny J., Bachanová K., Kohutova L., Dzurova M., Kopernicky J., Majtan J.. ( 2012;). Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia (Bratisl) 67: 200–211 [CrossRef].
    [Google Scholar]
  22. Kucera J., Sojka M., Pavlik V., Szuszkiewicz K., Velebny V., Klein P.. ( 2014;). Multispecies biofilm in an artificial wound bed – a novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods 103: 18–24 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kwakman P. H., Te Velde A. A., de Boer L., Vandenbroucke-Grauls C. M., Zaat S. A.. ( 2011;). Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6: e17709 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lee J. H., Park J. H., Kim J. A., Neupane G. P., Cho M. H., Lee C. S., Lee J.. ( 2011;). Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157 : H7. Biofouling 27: 1095–1104 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lu J., Turnbull L., Burke C. M., Liu M., Carter D. A., Schlothauer R. C., Whitchurch C. B., Harry E. J.. ( 2014;). Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2: e326 [CrossRef] [PubMed].
    [Google Scholar]
  26. Maddocks S. E., Lopez M. S., Rowlands R. S., Cooper R. A.. ( 2012;). Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 158: 781–790 [CrossRef] [PubMed].
    [Google Scholar]
  27. Majtan J., Majtan V.. ( 2010;). Is manuka honey the best type of honey for wound care?. J Hosp Infect 74: 305–306 [CrossRef] [PubMed].
    [Google Scholar]
  28. Majtan J., Klaudiny J., Bohova J., Kohutova L., Dzurova M., Sediva M., Bartosova M., Majtan V.. ( 2012;). Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: possible therapeutic implications. Fitoterapia 83: 671–677 [CrossRef] [PubMed].
    [Google Scholar]
  29. Majtan J., Bohova J., Horniackova M., Klaudiny J., Majtan V.. ( 2014;). Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytother Res 28: 69–75 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nidadavolu P., Amor W., Tran P. L., Dertien J., Colmer-Hamood J. A., Hamood A. N.. ( 2012;). Garlic ointment inhibits biofilm formation by bacterial pathogens from burn wounds. J Med Microbiol 61: 662–671 [CrossRef] [PubMed].
    [Google Scholar]
  31. Oliva A., Furustrand Tafin U., Maiolo E. M., Jeddari S., Bétrisey B., Trampuz A.. ( 2014;). Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother 58: 1284–1293 [CrossRef] [PubMed].
    [Google Scholar]
  32. Price L. B., Liu C. M., Melendez J. H., Frankel Y. M., Engelthaler D., Aziz M., Bowers J., Rattray R., Ravel J., other authors. ( 2009;). Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4: e6462 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rhoads D. D., Wolcott R. W., Cutting K. F., Percival S. L.. ( 2007;). Evidence of biofilms in wounds and potential ramifications. . In Biofilms: Coming of Age, pp. 131–143. Edited by Gilbert P., Allison D., Brading M., Pratten J., Spratt D., Upton M.. Manchester, UK: BioLine;.
    [Google Scholar]
  34. Shen L., Ding M., Zhang L., Jin F., Zhang W., Li D.. ( 2010;). Expression of Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity. J Agric Food Chem 58: 2266–2273 [CrossRef] [PubMed].
    [Google Scholar]
  35. Shen L., Liu D., Li M., Jin F., Din M., Parnell L. D., Lai C. Q.. ( 2012;). Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against Gram-positive bacteria. PLoS One 7: e47194 [CrossRef] [PubMed].
    [Google Scholar]
  36. Smith D. M., Snow D. E., Rees E., Zischkau A. M., Hanson J. D., Wolcott R. D., Sun Y., White J., Kumar S., Dowd S. E.. ( 2010;). Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med Genomics 3: 41 [CrossRef] [PubMed].
    [Google Scholar]
  37. Sun Y., Dowd S. E., Smith E., Rhoads D. D., Wolcott R. D.. ( 2008;). In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 16: 805–813 [CrossRef] [PubMed].
    [Google Scholar]
  38. Truchado P., Gil-Izquierdo A., Tomás-Barberán F., Allende A.. ( 2009;). Inhibition by chestnut honey of N-acyl-l-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J Agric Food Chem 57: 11186–11193 [CrossRef] [PubMed].
    [Google Scholar]
  39. Tseng J. M., Huang J. R., Huang H. C., Tzen J. T., Chou W. M., Peng C. C.. ( 2011;). Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil-body system. Biotechnol Prog 27: 153–161 [CrossRef] [PubMed].
    [Google Scholar]
  40. van den Driessche F., Rigole P., Brackman G., Coenye T.. ( 2014;). Optimization of resazurin-based viability staining for quantification of microbial biofilms. J Microbiol Methods 98: 31–34 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000227
Loading
/content/journal/jmm/10.1099/jmm.0.000227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error