1887

Abstract

Metallo-β-lactamases (MBLs), porin OprD, integrons, virulence factors and the clonal relationships were characterized in imipenemresistant (IRPA) isolates. Fifty-six IRPA strains were recovered from blood samples of different patients at a Toulouse teaching hospital from 2011 to 2013. Susceptibility testing of 14 antibiotics was performed by the disc diffusion method. Detection and characterization of MBLs, the gene and integrons were studied by PCR and sequencing. Thirteen genes involved in the virulence of were analysed. Molecular typing of IRPA strains was performed by PFGE and multilocus sequence typing. In this study, 61 % of the IRPA isolates showed a multi-resistance phenotype. The MBL phenotype, detected in three isolates (5.4 %), was linked to the gene. The gene was amplified in 55 (98.2 %) IRPA strains, and variations were observed in 54 of them. Insertion sequences (IS) truncating were detected in eight IRPA strains, with the novel IS identified in two strains. Class 1 integrons were detected in 24 (42.9 %) IRPA strains. The gene was found inside the class 1 integron arrangements. The new integrons In1054 (Δ) and In1160 (---IS-Δ) have been described for the first time, to the best of our knowledge, in this study. A high clonal diversity was found in our strains. Among the variety of sequence types (STs) found, ST175, ST233, ST235, ST244 and ST654 were noteworthy as epidemic clones. In conclusion, 5.4 % of IRPA strains showed an MBL phenotype linked to the gene. The identified high polymorphism could be implicated in the variable resistance to carbapenems in IRPA strains. The dissemination of high-risk clones is a cause of concern.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000225
2016-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/4/311.html?itemId=/content/journal/jmm/10.1099/jmm.0.000225&mimeType=html&fmt=ahah

References

  1. Cabot G., Ocampo-Sosa A. A., Domínguez M. A., Gago J. F., Juan C., Tubau F., Rodríguez C., Moyà B., Peña C., other authors. ( 2012;). Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 56: 6349–6357 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cabrol S., Olliver A., Pier G. B., Andremont A., Ruimy R.. ( 2003;). Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol 185: 7222–7230 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cornaglia G., Giamarellou H., Rossolini G. M.. ( 2011;). Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis 11: 381–393 [CrossRef] [PubMed].
    [Google Scholar]
  4. Curran B., Jonas D., Grundmann H., Pitt T., Dowson C. G.. ( 2004;). Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42: 5644–5649 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ellington M. J., Kistler J., Livermore D. M., Woodford N.. ( 2007;). Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59: 321–322 [CrossRef] [PubMed].
    [Google Scholar]
  6. Evans J. C., Segal H.. ( 2007;). A novel insertion sequence, ISPA26, in oprD of Pseudomonas aeruginosa is associated with carbapenem resistance. Antimicrob Agents Chemother 51: 3776–3777 [CrossRef] [PubMed].
    [Google Scholar]
  7. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R.. ( 2001;). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147: 2659–2669 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fournier D., Jeannot K., Robert-Nicoud M., Muller E., Cholley P., van der Mee-Marquet N., Plésiat P.. ( 2012;). Spread of the bla IMP-13 gene in French Pseudomonas aeruginosa through sequence types ST621, ST308 and ST111. Int J Antimicrob Agents 40: 571–573 [CrossRef] [PubMed].
    [Google Scholar]
  9. Fournier D., Richardot C., Müller E., Robert-Nicoud M., Llanes C., Plésiat P., Jeannot K.. ( 2013;). Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother 68: 1772–1780 [CrossRef] [PubMed].
    [Google Scholar]
  10. Francisco A. P., Vaz C., Monteiro P. T., Melo-Cristino J., Ramirez M., Carriço J. A.. ( 2012;). PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13: 87 [CrossRef] [PubMed].
    [Google Scholar]
  11. Franco M. R., Caiaffa-Filho H. H., Burattini M. N., Rossi F.. ( 2010;). Metallo-β-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 65: 825–829 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gutiérrez O., Juan C., Cercenado E., Navarro F., Bouza E., Coll P., Pérez J. L., Oliver A.. ( 2007;). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 51: 4329–4335 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hauser A. R.. ( 2009;). The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7: 654–665 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kaszab E., Szoboszlay S., Dobolyi C., Háhn J., Pék N., Kriszt B.. ( 2011;). Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 102: 1543–1548 [CrossRef] [PubMed].
    [Google Scholar]
  15. CA-SFM ( 2011;). Comité de l'antibiogramme de la Société Française de Microbiologie. Recommendations 2011. http://www.sfm-microbiologie.org/UserFiles/files/casfm/casfm_2011.pdf.
  16. Lee K., Chong Y., Shin H. B., Kim Y. A., Yong D., Yum J. H.. ( 2001;). Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 7: 88–91 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lee J. Y., Peck K. R., Ko K. S.. ( 2013;). Selective advantages of two major clones of carbapenem-resistant Pseudomonas aeruginosa isolates (CC235 and CC641) from Korea: antimicrobial resistance, virulence and biofilm-forming activity. J Med Microbiol 62: 1015–1024 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lin H. H., Huang S. P., Teng H. C., Ji D. D., Chen Y. S., Chen Y. L.. ( 2006;). Presence of the exoU gene of Pseudomonas aeruginosa is correlated with cytotoxicity in MDCK cells but not with colonization in BALB/c mice. J Clin Microbiol 44: 4596–4597 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lister P. D., Wolter D. J., Hanson N. D.. ( 2009;). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582–610 [CrossRef] [PubMed].
    [Google Scholar]
  20. Maatallah M., Cheriaa J., Backhrouf A., Iversen A., Grundmann H., Do T., Lanotte P., Mastouri M., Elghmati M. S., other authors. ( 2011;). Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One 6: e25617 [CrossRef] [PubMed].
    [Google Scholar]
  21. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G., other authors. ( 2012;). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268–281 [CrossRef] [PubMed].
    [Google Scholar]
  22. Moyo S., Haldorsen B., Aboud S., Blomberg B., Maselle S. Y., Sundsfjord A., Langeland N., Samuelsen Ø.. ( 2015;). Identification of VIM-2-producing Pseudomonas aeruginosa from Tanzania is associated with sequence types 244 and 640 and the location of bla VIM-2 in a TniC integron. Antimicrob Agents Chemother 59: 682–685 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. ( 1997;). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179: 3127–3132 [PubMed].
    [Google Scholar]
  24. Petit S. M., Lavenir R., Colinon-Dupuich C., Boukerb A. M., Cholley P., Bertrand X., Freney J., Doléans-Jordheim A., Nazaret S., other authors. ( 2013;). Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa. Res Microbiol 164: 856–866 [CrossRef] [PubMed].
    [Google Scholar]
  25. Poole K.. ( 2011;). Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2: 65 [CrossRef] [PubMed].
    [Google Scholar]
  26. Rojo-Bezares B., Estepa V., de Toro M., Undabeitia E., Olarte I., Torres C., Sáenz Y.. ( 2011;). A novel class 1 integron array carrying bla VIM-2 genes and a new insertion sequence in a Pseudomonas aeruginosa strain isolated from a Spanish hospital. J Med Microbiol 60: 1053–1054 [CrossRef] [PubMed].
    [Google Scholar]
  27. Rojo-Bezares B., Estepa V., Cebollada R., de Toro M., Somalo S., Seral C., Castillo F. J., Torres C., Sáenz Y.. ( 2014;). Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-β-lactamases, porin OprD and integrons. Int J Med Microbiol 304: 405–414 [CrossRef] [PubMed].
    [Google Scholar]
  28. Rosser S. J., Young H. K.. ( 1999;). Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 44: 11–18 [CrossRef] [PubMed].
    [Google Scholar]
  29. Sáenz Y., Briñas L., Domínguez E., Ruiz J., Zarazaga M., Vila J., Torres C.. ( 2004;). Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother 48: 3996–4001 [CrossRef] [PubMed].
    [Google Scholar]
  30. Samuelsen O., Toleman M. A., Sundsfjord A., Rydberg J., Leegaard T. M., Walder M., Lia A., Ranheim T. E., Rajendra Y., other authors. ( 2010;). Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother 54: 346–352 [CrossRef] [PubMed].
    [Google Scholar]
  31. Shaver C. M., Hauser A. R.. ( 2004;). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72: 6969–6977 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B.. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233–2239 [PubMed].
    [Google Scholar]
  33. Vatcheva-Dobrevska R., Mulet X., Ivanov I., Zamorano L., Dobreva E., Velinov T., Kantardjiev T., Oliver A.. ( 2013;). Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist 19: 355–361 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wang J., Zhou J. Y., Qu T. T., Shen P., Wei Z. Q., Yu Y. S., Li L. J.. ( 2010;). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents 35: 486–491 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wiehlmann L., Wagner G., Cramer N., Siebert B., Gudowius P., Morales G., Köhler T., van Delden C., Weinel C., other authors. ( 2007;). Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104: 8101–8106 [CrossRef] [PubMed].
    [Google Scholar]
  36. Willmann M., Bezdan D., Zapata L., Susak H., Vogel W., Schröppel K., Liese J., Weidenmaier C., Autenrieth I. B., other authors. ( 2015;). Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. J Antimicrob Chemother 70: 1322–1330 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wolter D. J., Hanson N. D., Lister P. D.. ( 2004;). Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett 236: 137–143 [CrossRef] [PubMed].
    [Google Scholar]
  38. Woodford N., Turton J. F., Livermore D. M.. ( 2011;). Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35: 736–755 [CrossRef] [PubMed].
    [Google Scholar]
  39. Wright L. L., Turton J. F., Livermore D. M., Hopkins K. L., Woodford N.. ( 2015;). Dominance of international ‘high-risk clones’ among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother 70: 103–110 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000225
Loading
/content/journal/jmm/10.1099/jmm.0.000225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error