1887

Abstract

Bloodstream infections caused by ST131 and ST131 H30-Rx subclones have emerged worldwide. This study was carried out to evaluate the prevalence of the ST131-Rx subclone and characterize the virulence properties of the Rx isolates among the bloodstream isolates. A total of 297 non-duplicated bloodstream isolates were studied. Antibiotic susceptibilities were tested using the disc diffusion method. PCR amplification and sequencing was used to identify ST131 and H30-Rx, the virulence gene, the β-lactamase and virotype. Quinolone resistance among bacteraemic strains was 51 %, and it was 98 % among ST131 isolates. The ST131 isolates accounted for 16 % (49) of all isolates and all ST131 isolates belonged to the extraintestinal pathogenic . The proportion of H30 subclone among the ST131 isolates was 98 %, and 75 % of H30 isolates belonged to the H30-Rx subclone. The prevalence of ST131 increased from 13 to 23 % in 4 years; however, there was a decrease in the ratio of H30-Rx infections. CTX-M-15 was detected in 85 % of ST131 and all of the H30-Rx isolates. The virulence genes associated with adhesion, cell protection, iron uptake and toxins ( and ) were more common in ST131 than in non-ST131 isolates. Most of the ST131 and H30-Rx isolates were of the C virotype. All -positive isolates were in virotype C. The ST131 clone has increased rapidly among bloodstream isolates. However, a decrease in the proportion of the H30-Rx subclone in the quinolone-resistant population suggests the possibility of dissemination of other virulent and quinolone-resistant subclones in hospital settings.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000224
2016-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/4/306.html?itemId=/content/journal/jmm/10.1099/jmm.0.000224&mimeType=html&fmt=ahah

References

  1. Adams-Sapper S., Diep B. A., Perdreau-Remington F., Riley L. W.. ( 2013;). Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agents Chemother 57: 490–497 [CrossRef] [PubMed].
    [Google Scholar]
  2. Banerjee R., Johnson J. R.. ( 2014;). A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 58: 4997–5004 [CrossRef] [PubMed].
    [Google Scholar]
  3. Banerjee R., Robicsek A., Kuskowski M. A., Porter S., Johnston B. D., Sokurenko E., Tchesnokova V., Price L. B., Johnson J. R.. ( 2013;). Molecular epidemiology of Escherichia coli sequence type 131 and its H30 and H30-Rx subclones among extended-spectrum-β-lactamase-positive and -negative E. coli clinical isolates from the Chicago region, 2007 to 2010. Antimicrob Agents Chemother 57: 6385–6388 [CrossRef] [PubMed].
    [Google Scholar]
  4. Blanco M., Alonso M. P., Nicolas-Chanoine M. H., Dahbi G., Mora A., Blanco J. E., López C., Cortés P., Llagostera M., other authors. ( 2009;). Molecular epidemiology of Escherichia coli producing extended-spectrum β-lactamases in Lugo (Spain): dissemination of clone O25b : H4-ST131 producing CTX-M-15. J Antimicrob Chemother 63: 1135–1141 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blanco J., Mora A., Mamani R., López C., Blanco M., Dahbi G., Herrera A., Marzoa J., Fernández V., other authors. ( 2013;). Four main virotypes among extended-spectrum-β-lactamase-producing isolates of Escherichia coli O25b : H4-B2-ST131: bacterial, epidemiological, and clinical characteristics. J Clin Microbiol 51: 3358–3367 [CrossRef] [PubMed].
    [Google Scholar]
  6. Can F., Azap O. K., Seref C., Ispir P., Arslan H., Ergonul O.. ( 2015;). Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis 60: 523–527 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cho S. Y., Kang C. I., Cha M. K., Wi Y. M., Ha Y. E., Chung D. R., Lee N. Y., Peck K. R., Song J. H., Korean Network for Study on Infectious Diseases. ( 2015;). Clinical features and treatment outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli sequence type 131. Microb Drug Resist 21: 463–469 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chung H. C., Lai C. H., Lin J. N., Huang C. K., Liang S. H., Chen W. F., Shih Y. C., Lin H. H., Wang J. L.. ( 2012;). Bacteremia caused by extended-spectrum-β-lactamase-producing Escherichia coli sequence type ST131 and non-ST131 clones: comparison of demographic data, clinical features, and mortality. Antimicrob Agents Chemother 56: 618–622 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ciesielczuk H., Betts J., Phee L., Doumith M., Hope R., Woodford N., Wareham D. W.. ( 2015;). Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 6: 145–151 [CrossRef] [PubMed].
    [Google Scholar]
  10. CLSI ( 2010;). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  11. Colpan A., Johnston B., Porter S., Clabots C., Anway R., Thao L., Kuskowski M. A., Tchesnokova V., Sokurenko E. V., other authors. ( 2013;). Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin Infect Dis 57: 1256–1265 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dhanji H., Doumith M., Clermont O., Denamur E., Hope R., Livermore D. M., Woodford N.. ( 2010;). Real-time PCR for detection of the O25b-ST131 clone of Escherichia coli and its CTX-M-15-like extended-spectrum β-lactamases. Int J Antimicrob Agents 36: 355–358 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ewers C., Li G., Wilking H., Kießling S., Alt K., Antáo E.-M., Laturnus C., Diehl I., Glodde S., other authors. ( 2007;). Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?. Int J Med Microbiol 297: 163–176 [CrossRef] [PubMed].
    [Google Scholar]
  14. Johnson J. R., Stell A. L.. ( 2000;). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181: 261–272 [CrossRef] [PubMed].
    [Google Scholar]
  15. Johnson J. R., Stell A. L., Scheutz F., O'Bryan T. T., Russo T. A., Carlino U. B., Fasching C., Kavle J., Van Dijk L., Gaastra W.. ( 2000;). Analysis of the F antigen-specific papA alleles of extraintestinal pathogenic Escherichia coli using a novel multiplex PCR-based assay. Infect Immun 68: 1587–1599 [CrossRef] [PubMed].
    [Google Scholar]
  16. Johnson J. R., Kuskowski M. A., Owens K., Gajewski A., Winokur P. L.. ( 2003;). Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis 188: 759–768 [CrossRef] [PubMed].
    [Google Scholar]
  17. Johnson J. R., Johnston B., Clabots C., Kuskowski M. A., Castanheira M.. ( 2010;). Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 51: 286–294 [CrossRef] [PubMed].
    [Google Scholar]
  18. Johnson J. R., Porter S. B., Zhanel G., Kuskowski M. A., Denamur E.. ( 2012;). Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 80: 1554–1562 [CrossRef] [PubMed].
    [Google Scholar]
  19. Johnson J. R., Tchesnokova V., Johnston B., Clabots C., Roberts P. L., Billig M., Riddell K., Rogers P., Qin X., other authors. ( 2013;). Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 207: 919–928 [CrossRef] [PubMed].
    [Google Scholar]
  20. Johnson J. R., Clermont O., Johnston B., Clabots C., Tchesnokova V., Sokurenko E., Junka A. F., Maczynska B., Denamur E.. ( 2014;). Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol 52: 1358–1365 [CrossRef] [PubMed].
    [Google Scholar]
  21. López-Cerero L., Navarro M. D., Bellido M., Martín-Peña A., Viñas L., Cisneros J. M., Gómez-Langley S. L., Sánchez-Monteseirín H., Morales I., other authors. ( 2014;). Escherichia coli belonging to the worldwide emerging epidemic clonal group O25b/ST131: risk factors and clinical implications. J Antimicrob Chemother 69: 809–814 [CrossRef] [PubMed].
    [Google Scholar]
  22. Olesen B., Hansen D. S., Nilsson F., Frimodt-Møller J., Leihof R. F., Struve C., Scheutz F., Johnston B., Krogfelt K. A., Johnson J. R.. ( 2013;). Prevalence and characteristics of the epidemic multiresistant Escherichia coli ST131 clonal group among extended-spectrum beta-lactamase-producing E. coli isolates in Copenhagen, Denmark. J Clin Microbiol 51: 1779–1785 [CrossRef] [PubMed].
    [Google Scholar]
  23. Olesen B., Frimodt-Møller J., Leihof R. F., Struve C., Johnston B., Hansen D. S., Scheutz F., Krogfelt K. A., Kuskowski M. A., other authors. ( 2014;). Temporal trends in antimicrobial resistance and virulence-associated traits within the Escherichia coli sequence type 131 clonal group and its H30 and H30-Rx subclones, 1968 to 2012. Antimicrob Agents Chemother 58: 6886–6895 [CrossRef] [PubMed].
    [Google Scholar]
  24. Peirano G., Pitout J. D.. ( 2014;). Fluoroquinolone-resistant Escherichia coli sequence type 131 isolates causing bloodstream infections in a Canadian region with a centralized laboratory system: rapid emergence of the H30-Rx sublineage. Antimicrob Agents Chemother 58: 2699–2703 [CrossRef] [PubMed].
    [Google Scholar]
  25. Price L. B., Johnson J. R., Aziz M., Clabots C., Johnston B., Tchesnokova V., Nordstrom L., Billig M., Chattopadhyay S., other authors. ( 2013;). The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 4: e00377-13 [CrossRef] [PubMed].
    [Google Scholar]
  26. Rogers B. A., Sidjabat H. E., Paterson D. L.. ( 2011;). Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66: 1–14 [CrossRef] [PubMed].
    [Google Scholar]
  27. Santos A. C., Zidko A. C., Pignatari A. C., Silva R. M.. ( 2013;). Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz J Med Biol Res 46: 968–973 [CrossRef] [PubMed].
    [Google Scholar]
  28. Wu Y. H., Cheng M. F., Lai C. H., Lin H. H., Hung C. H., Wang J. L.. ( 2014;). The role of sequence type (ST) 131 in adult community-onset non-ESBL-producing Escherichia coli bacteraemia. BMC Infect Dis 14: 579 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000224
Loading
/content/journal/jmm/10.1099/jmm.0.000224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error