1887

Abstract

Given that is recognized as the most common cause of bacterial gastroenteritis worldwide, recent findings showing comparable levels of in patients with gastroenteritis would suggest that this bacterium is clinically important. The prevalence and abundance of in stool samples collected from patients with acute gastroenteritis was examined using quantitative real-time PCR. The associated virulence determinants exotoxin 9 and zonula occludens toxin DNA were detected for -infected samples using real-time PCR. was detected at high prevalence in patients with gastroenteritis (49.7 %), higher than that observed for (∼5 %). The levels of were putatively classified into clinically relevant and potentially transient subgroups based on a threshold developed using levels, as the highly sensitive real-time PCR probably detected transient passage of the bacterium from the oral cavity. A total of 18 % of patients were found to have clinically relevant levels of , a significant number of which also had high levels of one of the virulence determinants. Of these patients, 78 % were found to have no other gastrointestinal pathogen identified in the stool, which strongly suggests a role for in the aetiology of gastroenteritis in these patients. These results emphasize the need for diagnostic laboratories to employ identification protocols for emerging species. Clinical follow-up in patients presenting with high levels of in the intestinal tract is needed, given that it has been associated with more chronic sequelae.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000216
2016-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/3/219.html?itemId=/content/journal/jmm/10.1099/jmm.0.000216&mimeType=html&fmt=ahah

References

  1. Aabenhus R. , Permin H. , On S. L. , Andersen L. P. . ( 2002;). Prevalence of Campylobacter concisus in diarrhoea of immunocompromised patients. Scand J Infect Dis 34: 248–252 [CrossRef] [PubMed].
    [Google Scholar]
  2. Allos B. M. . ( 2001;). Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 32: 1201–1206 [CrossRef] [PubMed].
    [Google Scholar]
  3. Blackett K. L. , Siddhi S. S. , Cleary S. , Steed H. , Miller M. H. , Macfarlane S. , Macfarlane G. T. , Dillon J. F. . ( 2013;). Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett's and oesophageal carcinoma: association or causality?. Aliment Pharmacol Ther 37: 1084–1092 [CrossRef] [PubMed].
    [Google Scholar]
  4. Burgos-Portugal J. A. , Mitchell H. M. , Castaño-Rodríguez N. , Kaakoush N. O. . ( 2014;). The role of autophagy in the intracellular survival of Campylobacter concisus . FEBS Open Bio 4: 301–309 [CrossRef] [PubMed].
    [Google Scholar]
  5. Casanova C. , Schweiger A. , von Steiger N. , Droz S. , Marschall J. . ( 2015;). Campylobacter concisus pseudo-outbreak caused by improved culture conditions. J Clin Microbiol 53: 660–662 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collado L. , Gutiérrez M. , González M. , Fernández H. . ( 2013;). Assessment of the prevalence and diversity of emergent campylobacteria in human stool samples using a combination of traditional and molecular methods. Diagn Microbiol Infect Dis 75: 434–436 [CrossRef] [PubMed].
    [Google Scholar]
  7. Deshpande N. P. , Kaakoush N. O. , Wilkins M. R. , Mitchell H. M. . ( 2013;). Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. BMC Genomics 14: 585 [CrossRef] [PubMed].
    [Google Scholar]
  8. Engberg J. , On S. L. , Harrington C. S. , Gerner-Smidt P. . ( 2000;). Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. J Clin Microbiol 38: 286–291 [PubMed].
    [Google Scholar]
  9. Fasano A. , Fiorentini C. , Donelli G. , Uzzau S. , Kaper J. B. , Margaretten K. , Ding X. , Guandalini S. , Comstock L. , Goldblum S. E. . ( 1995;). Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro . J Clin Invest 96: 710–720 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fasano A. , Uzzau S. , Fiore C. , Margaretten K. . ( 1997;). The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112: 839–846 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ferreira S. , Júlio C. , Queiroz J. A. , Domingues F. C. , Oleastro M. . ( 2014;). Molecular diagnosis of Arcobacter and Campylobacter in diarrhoeal samples among Portuguese patients. Diagn Microbiol Infect Dis 78: 220–225 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gradel K. O. , Nielsen H. L. , Schønheyder H. C. , Ejlertsen T. , Kristensen B. , Nielsen H. . ( 2009;). Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137: 495–501 [CrossRef] [PubMed].
    [Google Scholar]
  13. Griffiths R. I. , Whiteley A. S. , O'Donnell A. G. , Bailey M. J. . ( 2000;). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488–5491 [CrossRef] [PubMed].
    [Google Scholar]
  14. Inglis G. D. , Boras V. F. , Houde A. . ( 2011;). Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta, Canada. J Clin Microbiol 49: 209–219 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kaakoush N. O. , Mitchell H. M. . ( 2012;). Campylobacter concisus – a new player in intestinal disease. Front Cell Infect Microbiol 2: 4 [PubMed].
    [Google Scholar]
  16. Kaakoush N. O. , Man S. M. , Lamb S. , Raftery M. J. , Wilkins M. R. , Kovach Z. , Mitchell H. . ( 2010;). The secretome of Campylobacter concisus . FEBS J 277: 1606–1617 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kaakoush N. O. , Deshpande N. P. , Wilkins M. R. , Tan C. G. , Burgos-Portugal J. A. , Raftery M. J. , Day A. S. , Lemberg D. A. , Mitchell H. . ( 2011;). The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases. PLoS One 6: e29045 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kaakoush N. O. , Castaño-Rodríguez N. , Day A. S. , Lemberg D. A. , Leach S. T. , Mitchell H. M. . ( 2014a;). Campylobacter concisus and exotoxin 9 levels in paediatric patients with Crohn's disease and their association with the intestinal microbiota. J Med Microbiol 63: 99–105 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kaakoush N. O. , Mitchell H. M. , Man S. M. . ( 2014b;). Role of emerging Campylobacter species in inflammatory bowel diseases. Inflamm Bowel Dis 20: 2189–2197 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kaakoush N. O. , Castaño-Rodríguez N. , Day A. S. , Lemberg D. A. , Leach S. T. , Mitchell H. M. . ( 2015a;). Faecal levels of zonula occludens toxin in paediatric patients with Crohn's disease and their association with the intestinal microbiota. J Med Microbiol 64: 303–306 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kaakoush N. O. , Castaño-Rodríguez N. , Mitchell H. M. , Man S. M. . ( 2015b;). Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev 28: 687–720 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lastovica A. J. . ( 2006;). Emerging Campylobacter spp.: the tip of the iceberg. Clin Microbiol Newsl 28: 49–56.[CrossRef]
    [Google Scholar]
  23. Lastovica A. J. . ( 2009;). Clinical relevance of Campylobacter concisus isolated from pediatric patients. J Clin Microbiol 47: 2360 [CrossRef] [PubMed].
    [Google Scholar]
  24. Linton D. , Owen R. J. , Stanley J. . ( 1996;). Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res Microbiol 147: 707–718 [CrossRef] [PubMed].
    [Google Scholar]
  25. Macfarlane S. , Furrie E. , Macfarlane G. T. , Dillon J. F. . ( 2007;). Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus. Clin Infect Dis 45: 29–38 [CrossRef] [PubMed].
    [Google Scholar]
  26. Man S. M. , Kaakoush N. O. , Leach S. T. , Nahidi L. , Lu H. K. , Norman J. , Day A. S. , Zhang L. , Mitchell H. M. . ( 2010a;). Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis 202: 1855–1865 [CrossRef] [PubMed].
    [Google Scholar]
  27. Man S. M. , Zhang L. , Day A. S. , Leach S. T. , Lemberg D. A. , Mitchell H. . ( 2010b;). Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm Bowel Dis 16: 1008–1016 [CrossRef] [PubMed].
    [Google Scholar]
  28. Murray C. J. , Lopez A. D. . ( 1996;). Evidence-based health policy–lessons from the Global Burden of Disease Study. Science 274: 740–743 [CrossRef] [PubMed].
    [Google Scholar]
  29. Nielsen H. L. , Engberg J. , Ejlertsen T. , Bücker R. , Nielsen H. . ( 2012;). Short-term and medium-term clinical outcomes of Campylobacter concisus infection. Clin Microbiol Infect 18: E459–E465 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nielsen H. L. , Ejlertsen T. , Engberg J. , Nielsen H. . ( 2013a;). High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin Microbiol Infect 19: 445–450 [CrossRef] [PubMed].
    [Google Scholar]
  31. Nielsen H. L. , Engberg J. , Ejlertsen T. , Nielsen H. . ( 2013b;). Clinical manifestations of Campylobacter concisus infection in children. Pediatr Infect Dis J 32: 1194–1198 [CrossRef] [PubMed].
    [Google Scholar]
  32. Nielsen H. L. , Engberg J. , Ejlertsen T. , Nielsen H. . ( 2014;). Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection. Scand J Gastroenterol 49: 545–551 [CrossRef] [PubMed].
    [Google Scholar]
  33. Nielsen H. L. , Ejlertsen T. , Nielsen H. . ( 2015;). Polycarbonate filtration technique is noninferior to mCCDA for isolation of Campylobacter species from stool samples. Diagn Microbiol Infect Dis 83: 11–12 [CrossRef] [PubMed].
    [Google Scholar]
  34. Siah S. P. , Merif J. , Kaur K. , Nair J. , Huntington P. G. , Karagiannis T. , Stark D. , Rawlinson W. , Olma T. , other authors . ( 2014;). Improved detection of gastrointestinal pathogens using generalised sample processing and amplification panels. Pathology 46: 53–59 [CrossRef] [PubMed].
    [Google Scholar]
  35. Webb A. , Starr M. . ( 2005;). Acute gastroenteritis in children. Aust Fam Physician 34: 227–231 [PubMed].
    [Google Scholar]
  36. Zhang L. , Budiman V. , Day A. S. , Mitchell H. , Lemberg D. A. , Riordan S. M. , Grimm M. , Leach S. T. , Ismail Y. . ( 2010;). Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J Clin Microbiol 48: 2965–2967 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000216
Loading
/content/journal/jmm/10.1099/jmm.0.000216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error