1887

Abstract

(group B , GBS) infection remains a major problem associated with high mortality of cultured tilapia worldwide. The present study reports the serotype distribution and antimicrobial susceptibilities of GBS isolated from infected tilapia cultured in Thailand. One hundred and forty-four GBS isolates were identified by biochemical, serological and molecular analyses. Of these 144 GBS isolates, 126 were serotype Ia and 18 were serotype III. Antimicrobial susceptibilities of the 144 GBS isolates were determined by the disc diffusion method. Most GBS isolates were susceptible to lincomycin, norfloxacin, oxytetracycline, ampicillin, erythromycin and chloramphenicol, but resistant to oxolinic acid, gentamicin, sulfamethoxazole and trimethoprim. However, 17 isolates displayed an oxytetracycline-resistant phenotype and harboured the (M) gene. The broth microdilution method was used to determine the minimal inhibitory concentrations (MICs) of 17 oxytetracycline-resistant GBS isolates, and then minimal bactericidal concentrations (MBCs) of these isolates were evaluated. Oxytetracyline-resistant isolates were found to be susceptible to ampicillin, lincomycin, norfloxacin, erythromycin and chloramphenicol, with the MIC and MBC ranging from ≤ 0.125 to 0.5 μg ml and ≤ 0.125 to 2 μg ml, respectively. Moreover, all 17 oxytetracycline-resistant isolates demonstrated resistance to trimethoprim, oxolinic acid, gentamicin, sulfamethoxazole and oxytetracycline, with the MIC and MBC ranging from 16 to ≥ 128 μg ml and ≥ 128 μg ml, respectively. These findings are useful information for antibiotic usage in fish aquaculture.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000213
2016-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/3/247.html?itemId=/content/journal/jmm/10.1099/jmm.0.000213&mimeType=html&fmt=ahah

References

  1. Banno H. , Kimura K. , Tanaka Y. , Kitanaka H. , Jin W. , Wachino J. , Yamada K. , Shibayama K. , Arakawa Y. . ( 2014;). Characterization of multidrug-resistant group B streptococci with reduced penicillin susceptibility forming small non-beta-hemolytic colonies on sheep blood agar plates. J Clin Microbiol 52: 2169–2171 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baoprasertkul P. , Somsiri T. , Boonyawiwat V. . ( 2012;). Use of veterinary medicines in Thai aquaculture: current status. . In Improving Biosecurity through Prudent and Responsible use of Veterinary Medicines in Aquatic Food Production (FAO Fisheries and Aquaculture Technical Paper no. 547), pp. 83–89. Edited by Bondad-Reantaso M. G. , Arthur J. R. , Subasinghe R. P. . Rome: FAO;.
    [Google Scholar]
  3. Berkowitz K. , Regan J. A. , Greenberg E. . ( 1990;). Antibiotic resistance patterns of group B streptococci in pregnant women. J Clin Microbiol 28: 5–7 [PubMed].
    [Google Scholar]
  4. Berridge B. R. , Fuller J. D. , de Azavedo J. , Low D. E. , Bercovier H. , Frelier P. F. . ( 1998;). Development of specific nested oligonucleotide PCR primers for the Streptococcus iniae 16S-23S ribosomal DNA intergenic spacer. J Clin Microbiol 36: 2778–2781 [PubMed].
    [Google Scholar]
  5. Bishop E. J. , Shilton C. , Benedict S. , Kong F. , Gilbert G. L. , Gal D. , Godoy D. , Spratt B. G. , Currie B. J. . ( 2007;). Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature. Epidemiol Infect 135: 1248–1255 [PubMed].[CrossRef]
    [Google Scholar]
  6. Boswihi S. S. , Udo E. E. , Al-Sweih N. . ( 2012;). Serotypes and antibiotic resistance in Group B streptococcus isolated from patients at the Maternity Hospital, Kuwait. J Med Microbiol 61: 126–131 [CrossRef] [PubMed].
    [Google Scholar]
  7. Buu-Hoï A. , Le Bouguenec C. , Horaud T. . ( 1990;). High-level chromosomal gentamicin resistance in Streptococcus agalactiae (group B). Antimicrob Agents Chemother 34: 985–988 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chen C. Y. , Chao C. B. , Bowser P. R. . ( 2006;). Infection of tilapia Oreochromis sp. by Vibrio vulnificus in freshwater and low-salinity environments. J World Aquac Soc 37: 82–88 [CrossRef].
    [Google Scholar]
  9. Chopra I. , Roberts M. . ( 2001;). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65: 232–260 [CrossRef] [PubMed].
    [Google Scholar]
  10. CLSI ( 2012;). Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100–S22. Wayne, PA: Clinical and Laboratory Standards Institute;.
  11. Delannoy C.M.J. , Crumlish M. , Fontaine M. C. , Pollock J. , Foster G. , Dagleish M. P. , Turnbull J. F. , Zadoks R. N. . ( 2013;). Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol 13: 41 [CrossRef] [PubMed].
    [Google Scholar]
  12. Direkbusarakom S. , Donayadol Y. . ( 1987;). Epizootic Diseases Caused by Non-haemolytic Streptococcus sp. in Cultured Sea Bass (Lates calcarifer) Technical Paper no. 6/1987 Songkhla: National Institute of Coastal Aquaculture, Department of Fisheries, Ministry of Agriculture and Cooperatives;.
    [Google Scholar]
  13. Doern G. V. , Scott D. R. , Rashad A. L. , Kim K. S. . ( 1981;). Evaluation of a direct blood culture disk diffusion antimicrobial susceptibility test. Antimicrob Agents Chemother 20: 696–698 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dogan B. , Schukken Y. H. , Santisteban C. , Boor K. J. . ( 2005;). Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J Clin Microbiol 43: 5899–5906 [CrossRef] [PubMed].
    [Google Scholar]
  15. Dong H. T. , LaFrentz B. , Pirarat N. , Rodkhum C. . ( 2015;). Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp., in Thailand. J Fish Dis 38: 901–913 [CrossRef] [PubMed].
    [Google Scholar]
  16. Duremdez R. , Al-Marzouk A. , Qasem J. A. , Al-Harbi A. , Gharabally H. . ( 2004;). Isolation of Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen), in Kuwait. J Fish Dis 27: 307–310 [CrossRef] [PubMed].
    [Google Scholar]
  17. Evans J. J. , Bohnsack J. F. , Klesius P. H. , Whiting A. A. , Garcia J. C. , Shoemaker C. A. , Takahashi S. . ( 2008;). Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol 57: 1369–1376 [CrossRef] [PubMed].
    [Google Scholar]
  18. Fischer A. , Liljander A. , Kaspar H. , Muriuki C. , Fuxelius H. H. , Bongcam-Rudloff E. , de Villiers E. P. , Huber C. A. , Frey J. , other authors . ( 2013;). Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element. Vet Res 44: 86 [CrossRef] [PubMed].
    [Google Scholar]
  19. Geng Y. , Wang K. Y. , Huang X. L. , Chen D. F. , Li C. W. , Ren S. Y. , Liao Y. T. , Zhou Z. Y. , Liu Q. F. , other authors . ( 2012;). Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound Emerg Dis 59: 369–375 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hedayatianfard K. , Akhlaghi M. , Sharifiyazdi H. . ( 2014;). Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Vet Res Forum 5: 269–275 [PubMed].
    [Google Scholar]
  21. Huovinen P. . ( 2001;). Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32: 1608–1614 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ip M. , Cheuk E.S.C. , Tsui M.H.Y. , Kong F. , Leung T. N. , Gilbert G. L. . ( 2006;). Identification of a Streptococcus agalactiae serotype III subtype 4 clone in association with adult invasive disease in Hong Kong. J Clin Microbiol 44: 4252–4254 [CrossRef] [PubMed].
    [Google Scholar]
  23. Itsaro A. , Suanyuk N. , Tantikitti C. . ( 2012;). Multiplex PCR for simultaneous detection of Streptococcus agalactiae, Streptococcus iniae and Lactococcus garvieae: a case of S. agalactiae infection in cultured nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis niloticus × Oreochromis mossambicus). Songklanakarin J Sci Technol 34: 495–500.
    [Google Scholar]
  24. Jain B. , Tewari A. , Bhandari B. B. , Jhala M. K. . ( 2012;). Antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from cases of bovine subclinical mastitis. Vet Arhiv 82: 423–432.
    [Google Scholar]
  25. Kasornchan J. , Boonyaratpalin S. , Supamataya K. . ( 1986;). Streptococcus sp., the pathogenic bacteria of sand goby, Oxyeleotris marmoratus (Bleeker). Songklanakarin J Sci Technol 8: 329–332.
    [Google Scholar]
  26. Kayansamruaj P. , Pirarat N. , Kondo H. , Hirono I. , Rodkhum C. . ( 2014;). Draft genome sequences of Streptococcus agalactiae strains isolated from Nile tilapia (Oreochromis niloticus) farms in Thailand. Genome Announc 2: e01300–e01314 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kitancharoen N. , Hanjavanij C. , Suwannapeng N. . ( 2006;). Efficiency of vaccination with Streptococcus agalactiae bacterin on streptococcosis prevention in Nile tilapia. Khon Kaen Univ Res J 11: 53–61.
    [Google Scholar]
  28. Kong F. , Gowan S. , Martin D. , James G. , Gilbert G. L. . ( 2002;). Serotype identification of group B streptococci by PCR and sequencing. J Clin Microbiol 40: 216–226 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kong F. , Ma L. , Gilbert G. L. . ( 2005;). Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 54: 1133–1138 [CrossRef] [PubMed].
    [Google Scholar]
  30. Martinez G. , Harel J. , Higgins R. , Lacouture S. , Daignault D. , Gottschalk M. . ( 2000;). Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis. J Clin Microbiol 38: 71–78 [PubMed].
    [Google Scholar]
  31. Miranda C. D. , Tello A. , Keen P. L. . ( 2013;). Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol 4: 233 [CrossRef] [PubMed].
    [Google Scholar]
  32. Nagano N. , Nagano Y. , Toyama M. , Kimura K. , Tamura T. , Shibayama K. , Arakawa Y. . ( 2012;). Nosocomial spread of multidrug-resistant group B streptococci with reduced penicillin susceptibility belonging to clonal complex 1. J Antimicrob Chemother 67: 849–856 [CrossRef] [PubMed].
    [Google Scholar]
  33. Park Y. K. , Nho S. W. , Shin G. W. , Park S. B. , Jang H. B. , Cha I. S. , Ha M. A. , Kim Y. R. , Dalvi R. S. , other authors . ( 2009;). Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet Microbiol 136: 76–81 [CrossRef] [PubMed].
    [Google Scholar]
  34. Petinaki E. , Guérin-Faublée V. , Pichereau V. , Villers C. , Achard A. , Malbruny B. , Leclercq R. . ( 2008;). Lincomycin resistance gene lnu(D) in Streptococcus uberis . Antimicrob Agents Chemother 52: 626–630 [CrossRef] [PubMed].
    [Google Scholar]
  35. Schmitz F. J. , Perdikouli M. , Beeck A. , Verhoef J. , Fluit A. C. , European SENTRY participants . ( 2001;). Resistance to trimethoprim-sulfamethoxazole and modifications in genes coding for dihydrofolate reductase and dihydropteroate synthase in European Streptococcus pneumoniae isolates. J Antimicrob Chemother 48: 935–936 [CrossRef] [PubMed].
    [Google Scholar]
  36. Seyfried E. E. , Newton R. J. , Rubert K. F. IV , Pedersen J. A. , McMahon K. D. . ( 2010;). Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb Ecol 59: 799–807 [CrossRef] [PubMed].
    [Google Scholar]
  37. Sharma P. C. , Saneja A. , Jain S. . ( 2008;). Norfloxacin: a therapeutic review. Int J Chem Sci 6: 1702–1713.
    [Google Scholar]
  38. Slotved H. C. , Kong F. , Lambertsen L. , Sauer S. , Gilbert G. L. . ( 2007;). Serotype IX, a proposed new Streptococcus agalactiae serotype. J Clin Microbiol 45: 2929–2936 [CrossRef] [PubMed].
    [Google Scholar]
  39. Soto E. , Kidd S. , Gaunt P. S. , Endris R. . ( 2013;). Efficacy of florfenicol for control of mortality associated with Francisella noatunensis subsp. orientalis in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 36: 411–418 [CrossRef] [PubMed].
    [Google Scholar]
  40. Steward C. D. , Stocker S. A. , Swenson J. M. , O'Hara C. M. , Edwards J. R. , Gaynes R. P. , McGowan J. E. Jr , Tenover F. C. . ( 1999;). Comparison of agar dilution, disk diffusion, MicroScan, and Vitek antimicrobial susceptibility testing methods to broth microdilution for detection of fluoroquinolone-resistant isolates of the family Enterobacteriaceae . J Clin Microbiol 37: 544–547 [PubMed].
    [Google Scholar]
  41. Suanyuk N. , Kong F. , Ko D. , Gilbert G. L. , Supamattaya K. . ( 2008;). Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand—relationship to human isolates?. Aquaculture 284: 35–40 [CrossRef].
    [Google Scholar]
  42. Suanyuk N. , Sukkasame N. , Tanmark N. , Yoshida T. , Itami T. , Thune R. L. , Tantikitti C. , Supamattaya K. . ( 2010;). Streptococcus iniae infection in cultured Asian sea bass (Lates calcarifer) and red tilapia (Oreochromis sp.) in southern Thailand. Songklanakarin J Sci Technol 32: 341–348.
    [Google Scholar]
  43. Suwannasang A. , Dangwetngam M. , Issaro A. , Phromkunthong W. , Suanyuk N. . ( 2014;). Pathological manifestations and immune responses of serotypes Ia and III Streptococcus agalactiae infections in Nile tilapia (Oreochromis niloticus). Songklanakarin J Sci Technol 36: 499–506.
    [Google Scholar]
  44. Tipmongkolsilp N. , del Castillo C. S. , Hikima J. , Jung T. S. , Kondo H. , Hirono I. , Aoki T. . ( 2012;). Multiple drug-resistant strains of Aeromonas hydrophila isolated from tilapia farms in Thailand. Fish Pathol 47: 56–63 [CrossRef].
    [Google Scholar]
  45. Vandamme P. , Devriese L. A. , Pot B. , Kersters K. , Melin P. . ( 1997;). Streptococcus difficile is a nonhemolytic group B, type Ib streptococcus. Int J Syst Bacteriol 47: 81–85 [CrossRef] [PubMed].
    [Google Scholar]
  46. Wanman C. , Klowklieng T. , Supamattaya K. . ( 2005;). Streptococcosis in seabass (Lates calcarifer). Songklanakarin J Sci Technol 27: (suppl. 1), 291–305.
    [Google Scholar]
  47. Zeng X. , Kong F. , Morgan J. , Gilbert G. L. . ( 2006;). Evaluation of a multiplex PCR-based reverse line blot-hybridization assay for identification of serotype and surface protein antigens of Streptococcus agalactiae . J Clin Microbiol 44: 3822–3825 [CrossRef] [PubMed].
    [Google Scholar]
  48. Zhao Z. , Kong F. , Martinez G. , Zeng X. , Gottschalk M. , Gilbert G. L. . ( 2006;). Molecular serotype identification of Streptococcus agalactiae of bovine origin by multiplex PCR-based reverse line blot (mPCR/RLB) hybridization assay. FEMS Microbiol Lett 263: 236–239 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000213
Loading
/content/journal/jmm/10.1099/jmm.0.000213
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error