1887

Abstract

Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: , and . Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against and . Only WLBU2 had bactericidal activity against . WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria . Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against in an infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50 % killing of at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000209
2016-02-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/2/188.html?itemId=/content/journal/jmm/10.1099/jmm.0.000209&mimeType=html&fmt=ahah

References

  1. Boman H. G.. 1995; Peptide antibiotics and their role in innate immunity. Annu Rev Immunol13:61–92 [CrossRef][PubMed]
    [Google Scholar]
  2. Brogden K. A.. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol3:238–250 [CrossRef][PubMed]
    [Google Scholar]
  3. Burtnick M. N., Woods D. E.. 1999; Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother43:2648–2656
    [Google Scholar]
  4. Chantratita N., Wuthiekanun V., Boonbumrung K., Tiyawisutsri R., Vesaratchavest M., Limmathurotsakul D., Chierakul W., Wongratanacheewin S., Pukritiyakamee S., other authors. 2007; Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol189:807–817 [CrossRef][PubMed]
    [Google Scholar]
  5. Deslouches B., Islam K., Craigo J. K., Paranjape S. M., Montelaro R. C., Mietzner T. A.. 2005a; Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother49:3208–3216 [CrossRef][PubMed]
    [Google Scholar]
  6. Deslouches B., Phadke S. M., Lazarevic V., Cascio M., Islam K., Montelaro R. C., Mietzner T. A.. 2005b; De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother49:316–322 [CrossRef][PubMed]
    [Google Scholar]
  7. Faith S. A., Smith L. P., Swatland A. S., Reed D. S.. 2012; Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Front Cell Infect Microbiol2:126[CrossRef]
    [Google Scholar]
  8. Galván E. M., Lasaro M. A., Schifferli D. M.. 2008; Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun76:1456–1464 [CrossRef][PubMed]
    [Google Scholar]
  9. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M.. 1997; Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell88:553–560 [CrossRef][PubMed]
    [Google Scholar]
  10. Hancock R. E., Chapple D. S.. 1999; Peptide antibiotics. Antimicrob Agents Chemother43:1317–1323
    [Google Scholar]
  11. Hayden H. S., Lim R., Brittnacher M. J., Sims E. H., Ramage E. R., Fong C., Wu Z., Crist E., Chang J., other authors. 2012; Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One7:e36507 [CrossRef][PubMed]
    [Google Scholar]
  12. Hazlett K. R., Caldon S. D., McArthur D. G., Cirillo K. A., Kirimanjeswara G. S., Magguilli M. L., Malik M., Shah A., Broderick S., other authors. 2008; Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect Immun76:4479–4488 [CrossRef][PubMed]
    [Google Scholar]
  13. Kanthawong S., Nazmi K., Wongratanacheewin S., Bolscher J. G., Wuthiekanun V., Taweechaisupapong S.. 2009; In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides. Int J Antimicrob Agents34:309–314 [CrossRef][PubMed]
    [Google Scholar]
  14. Kanthawong S., Bolscher J. G., Veerman E. C., van Marle J., de Soet H. J., Nazmi K., Wongratanacheewin S., Taweechaisupapong S.. 2012; Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents39:39–44 [CrossRef][PubMed]
    [Google Scholar]
  15. Leelarasamee A.. 1998; Burkholderia pseudomallei: the unbeatable foe?. Southeast Asian J Trop Med Public Health29:410–415
    [Google Scholar]
  16. Madhongsa K., Pasan S., Phophetleb O., Nasompag S., Thammasirirak S., Daduang S., Taweechaisupapong S., Lomize A. L., Patramanon R.. 2013; Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis7:e2267 [CrossRef][PubMed]
    [Google Scholar]
  17. Miller M. A., Cloyd M. W., Liebmann J., Rinaldo C. R. Jr., Islam K. R., Wang S. Z., Mietzner T. A., Montelaro R. C.. 1993; Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology196:89–100 [CrossRef][PubMed]
    [Google Scholar]
  18. Ntwasa M.. 2012; Cationic peptide interactions with biological macromolecules. In Binding Proteins pp139–160 Edited by Abdelmohsen K.. Rijeka: InTech;
    [Google Scholar]
  19. Reckseidler-Zenteno S. L., DeVinney R., Woods D. E.. 2005; The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun73:1106–1115 [CrossRef][PubMed]
    [Google Scholar]
  20. Steiner D. J., Furuya Y., Metzger D. W.. 2014; Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist7:239–251
    [Google Scholar]
  21. Tencza S. B., Creighton D. J., Yuan T., Vogel H. J., Montelaro R. C., Mietzner T. A.. 1999; Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother44:33–41 [CrossRef][PubMed]
    [Google Scholar]
  22. Vonkavaara M., Pavel S. T., Hölzl K., Nordfelth R., Sjöstedt A., Stöven S.. 2013; Francisella is sensitive to insect antimicrobial peptides. J Innate Immun5:50–59 [CrossRef][PubMed]
    [Google Scholar]
  23. Wikraiphat C., Charoensap J., Utaisincharoen P., Wongratanacheewin S., Taweechaisupapong S., Woods D. E., Bolscher J. G., Sirisinha S.. 2009; Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants. FEMS Immunol Med Microbiol56:253–259 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000209
Loading
/content/journal/jmm/10.1099/jmm.0.000209
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error