1887

Abstract

is responsible for an estimated 1.6 million deaths worldwide every year. While rapid detection and timely treatment with appropriate antibiotics is preferred, this is often difficult due to the amount of time that detection with blood cultures takes. In this study, a novel quantitative PCR assay for the detection of was developed. To identify novel targets, we analysed the pneumococcal genome for unique, repetitive DNA sequences. This approach identified , which is conserved and present in duplicate copies in but not in other bacterial species. Comparison with , the current ‘gold standard’ for detection by quantitative PCR, demonstrated an analytic specificity of 100 % for both assays on a panel of 10 pneumococcal and 18 non-pneumococcal isolates, but a reduction of 3.5 quantitation cycle values ( ± 0.23 ), resulting in an increased analytical detection rate of We validated our assay on DNA extracted from the serum of 30 bacteraemic patients who were blood culture positive for and 51 serum samples that were culture positive for other bacteria. This resulted in a similar clinical sensitivity between the and assays (47 %) and in a diagnostic specificity of 98.2 and 100 % for the and assays, respectively. In conclusion, we have developed a novel quantitative PCR assay with increased analytical sensitivity for the detection of , which may be used to develop a rapid bedside test for the direct detection of in clinical specimens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000204
2016-02-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/2/129.html?itemId=/content/journal/jmm/10.1099/jmm.0.000204&mimeType=html&fmt=ahah

References

  1. Abdeldaim G. M. K., Strålin K., Korsgaard J., Blomberg J., Welinder-Olsson C., Herrmann B.. 2010; Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. BMC Microbiol10:310 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Arbique J. C., Poyart C., Trieu-Cuot P., Quesne G., Carvalho M. G., Steigerwalt A. G., Morey R. E., Jackson D., Davidson R. J., Facklam R. R.. 2004; Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol42:4686–4696 [CrossRef][PubMed]
    [Google Scholar]
  4. Boardman A. K., Campbell J., Wirz H., Sharon A., Sauer-Budge A. F.. 2015; Rapid microbial sample preparation from blood using a novel concentration device. PLoS One10:e0116837 [CrossRef][PubMed]
    [Google Scholar]
  5. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W., other authors. 2009; The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem55:611–622 [CrossRef][PubMed]
    [Google Scholar]
  6. Carvalho M., da G S., Tondella M. L., McCaustland K., Weidlich L., McGee L., Mayer L. W., Steigerwalt A., Whaley M., Facklam R. R., other authors. 2007; Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol45:2460–2466 [CrossRef][PubMed]
    [Google Scholar]
  7. Cremers A. J. H., Sprong T., Schouten J. A., Walraven G., Hermans P. W. M., Meis J. F., Ferwerda G.. 2014; Effect of antibiotic streamlining on patient outcome in pneumococcal bacteraemia. J Antimicrob Chemother69:2258–2264 [CrossRef][PubMed]
    [Google Scholar]
  8. Cvitkovic Spik V., Beovic B., Pokorn M., Drole Torkar A., Vidmar D., Papst L., Seme K., Kogoj R., Müller Premru M.. 2013; Improvement of pneumococcal pneumonia diagnostics by the use of rt-PCR on plasma and respiratory samples. Scand J Infect Dis45:731–737 [CrossRef][PubMed]
    [Google Scholar]
  9. Domínguez J., Blanco S., Rodrigo C., Azuara M., Galí N., Mainou A., Esteve A., Castellví A., Prat C., other authors. 2003; Usefulness of urinary antigen detection by an immunochromatographic test for diagnosis of pneumococcal pneumonia in children. J Clin Microbiol41:2161–2163 [CrossRef][PubMed]
    [Google Scholar]
  10. Dowell S. F., Garman R. L., Liu G., Levine O. S., Yang Y.-H.. 2001; Evaluation of Binax NOW, an assay for the detection of pneumococcal antigen in urine samples, performed among pediatric patients. Clin Infect Dis32:824–825 [CrossRef][PubMed]
    [Google Scholar]
  11. Hansen W. L. J., Beuving J., Bruggeman C. A., Wolffs P. F. G.. 2010; Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures. J Clin Microbiol48:4432–4438 [CrossRef][PubMed]
    [Google Scholar]
  12. Harris K. A., Turner P., Green E. A., Hartley J. C.. 2008; Duplex real-time PCR assay for detection of Streptococcus pneumoniae in clinical samples and determination of penicillin susceptibility. J Clin Microbiol46:2751–2758 [CrossRef][PubMed]
    [Google Scholar]
  13. Heffner A. C., Horton J. M., Marchick M. R., Jones A. E.. 2010; Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis50:814–820 [CrossRef][PubMed]
    [Google Scholar]
  14. Isaacman D. J., Karasic R. B., Reynolds E. A., Kost S. I.. 1996; Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr128:190–195 [CrossRef][PubMed]
    [Google Scholar]
  15. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T.. 1995; Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol45:406–408 [CrossRef][PubMed]
    [Google Scholar]
  16. Keith E. R., Podmore R. G., Anderson T. P., Murdoch D. R.. 2006; Characteristics of Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin Microbiol44:923–927 [CrossRef][PubMed]
    [Google Scholar]
  17. Koressaar T., Jõers K., Remm M.. 2009; Automatic identification of species-specific repetitive DNA sequences and their utilization for detecting microbial organisms. Bioinformatics25:1349–1355 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar A., Roberts D., Wood K. E., Light B., Parrillo J. E., Sharma S., Suppes R., Feinstein D., Zanotti S., other authors. 2006; Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med34:1589–1596 [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar A., Ellis P., Arabi Y., Roberts D., Light B., Parrillo J. E., Dodek P., Wood G., Kumar A., other authors. 2009; Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest136:1237–1248[PubMed][CrossRef]
    [Google Scholar]
  20. Laurens C., Michon A.-L., Marchandin H., Bayette J., Didelot M.-N., Jean-Pierre H.. 2012; Clinical and antimicrobial susceptibility data of 140 Streptococcus pseudopneumoniae isolates in France. Antimicrob Agents Chemother56:4504–4507 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee M. S., Morrison D. A.. 1999; Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol181:5004–5016[PubMed]
    [Google Scholar]
  22. Lemon K. P., Grossman A. D.. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science282:1516–1519 [CrossRef][PubMed]
    [Google Scholar]
  23. Leung M. H., Ling C. L., Ciesielczuk H., Lockwood J., Thurston S., Charalambous B. M., Gillespie S. H.. 2012; Streptococcus pseudopneumoniae identification by pherotype: a method to assist understanding of a potentially emerging or overlooked pathogen. J Clin Microbiol50:1684–1690 [CrossRef][PubMed]
    [Google Scholar]
  24. Loonen A. J. M., Bos M. P., van Meerbergen B., Neerken S., Catsburg A., Dobbelaer I., Penterman R., Maertens G., van de Wiel P., other authors. 2013; Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections. PLoS One8:e72349 [CrossRef][PubMed]
    [Google Scholar]
  25. Resti M., Micheli A., Moriondo M., Becciolini L., Cortimiglia M., Canessa C., Indolfi G., Bartolini E., de Martino M., Azzari C.. 2009; Comparison of the effect of antibiotic treatment on the possibility of diagnosing invasive pneumococcal disease by culture or molecular methods: a prospective, observational study of children and adolescents with proven pneumococcal infection. Clin Ther31:1266–1273 [CrossRef][PubMed]
    [Google Scholar]
  26. Rolo D., Simões A. S., Domenech A., Fenoll A., Liñares J., de Lencastre H., Ardanuy C., Sá-Leão R.. 2013; Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One8:e57047 [CrossRef][PubMed]
    [Google Scholar]
  27. Rouphael N., Steyn S., Bangert M., Sampson J. S., Adrian P., Madhi S. A., Klugman K. P., Ades E. W.. 2011; Use of 2 pneumococcal common protein real-time polymerase chain reaction assays in healthy children colonized with Streptococcus pneumoniae. Diagn Microbiol Infect Dis70:452–454 [CrossRef][PubMed]
    [Google Scholar]
  28. Selva L., Esteva C., Gené A., de Sevilla M. F., Hernandez-Bou S., Muñoz-Almagro C.. 2010; Direct detection of Streptococcus pneumoniae in positive blood cultures by real-time polymerase chain reaction. Diagn Microbiol Infect Dis66:204–206 [CrossRef][PubMed]
    [Google Scholar]
  29. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H., other authors. 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science293:498–506 [CrossRef][PubMed]
    [Google Scholar]
  30. Tissari P., Zumla A., Tarkka E., Mero S., Savolainen L., Vaara M., Aittakorpi A., Laakso S., Lindfors M., other authors. 2010; Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet375:224–230 [CrossRef][PubMed]
    [Google Scholar]
  31. van den Brand M., Peters R. P. H., Catsburg A., Rubenjan A., Broeke F. J., van den Dungen F. A. M., van Weissenbruch M. M., van Furth A. M., Kõressaar T., other authors. 2014; Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis. J Microbiol Methods106:8–15 [CrossRef][PubMed]
    [Google Scholar]
  32. van Doornum G. J., Guldemeester J., Osterhaus A. D., Niesters H. G.. 2003; Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol41:576–580 [CrossRef][PubMed]
    [Google Scholar]
  33. WHO 2007; Pneumococcal conjugate vaccine for childhood immunization – WHO position paper. Wkly Epidemiol Rec82:93–104[PubMed]
    [Google Scholar]
  34. Wu H. M., Cordeiro S. M., Harcourt B. H., Carvalho M., Azevedo J., Oliveira T. Q., Leite M. C., Salgado K., Reis M. G., other authors. 2013; Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis13:26 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000204
Loading
/content/journal/jmm/10.1099/jmm.0.000204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error