1887

Abstract

Extra-intestinal pathogenic (ExPEC) are the predominant cause of Gram-negative bloodstream infections. In this study, 20 isolates that were the causative agents of bacteraemia and subsequent mortality were characterized. Whole-genome sequencing was used to define the predominant sequence types (ST) among the isolates and to identify virulence factors associated with pathogenicity of ExPEC. The ability of the isolates to resist killing by both serum and polymorphonuclear leukocytes (PMNLs) was also assessed. In line with global trends, ST131 occurred most frequently among the bloodstream isolates and all isolates of this sequence type were multidrug resistant. Other common STs included ST73 and ST69. All isolates encoded multiple virulence factors across a range of categories, including factors involved in adhesion, immune evasion, iron acquisition and synthesis of toxins. None of these factors could be associated with serum and neutrophil resistance. The majority of isolates were resistant to the bactericidal action of serum and PMNLs, and most of those that were sensitive were isolated from patients with compromised immunity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000200
2016-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/71.html?itemId=/content/journal/jmm/10.1099/jmm.0.000200&mimeType=html&fmt=ahah

References

  1. Alhashash F. , Weston V. , Diggle M. , McNally A. . ( 2013;). Multidrug-resistant Escherichia coli bacteremia. Emerg Infect Dis 19: 1699–1701 [PubMed].[CrossRef]
    [Google Scholar]
  2. Alqasim A. , Emes R. , Clark G. , Newcombe J. , La Ragione R. , McNally A. . ( 2014;). Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli . PLoS One 9: e88374 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  4. Antão E. M. , Wieler L. H. , Ewers C. . ( 2009;). Adhesive threads of extraintestinal pathogenic Escherichia coli . Gut Pathog 1: 22 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bankevich A. , Nurk S. , Antipov D. , Gurevich A. A. , Dvorkin M. , Kulikov A. S. , Lesin V. M. , Nikolenko S. I. , Pham S. , other authors . ( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bolger A. M. , Lohse M. , Usadel B. . ( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120 [CrossRef] [PubMed].
    [Google Scholar]
  7. Buckles E. L. , Wang X. , Lane M. C. , Lockatell C. V. , Johnson D. E. , Rasko D. A. , Mobley H. L. , Donnenberg M. S. . ( 2009;). Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis 199: 1689–1697 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bullen J. J. , Rogers H. J. , Spalding P. B. , Ward C. G. . ( 2005;). Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43: 325–330 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cirl C. , Wieser A. , Yadav M. , Duerr S. , Schubert S. , Fischer H. , Stappert D. , Wantia N. , Rodriguez N. , other authors . ( 2008;). Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14: 399–406 [CrossRef] [PubMed].
    [Google Scholar]
  10. CLSI ( 2015;). Performance Standards for Antimicrobial Susceptibility Testing; Approved Standard, 12th edn. Supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute;.
  11. Coque T. M. , Novais A. , Carattoli A. , Poirel L. , Pitout J. , Peixe L. , Baquero F. , Cantón R. , Nordmann P. . ( 2008;). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14: 195–200 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dahbi G. , Mora A. , Mamani R. , López C. , Alonso M. P. , Marzoa J. , Blanco M. , Herrera A. , Viso S. , other authors . ( 2014;). Molecular epidemiology and virulence of Escherichia coli O16 : H5-ST131: comparison with H30 and H30-Rx subclones of O25b : H4-ST131. Int J Med Microbiol 304: 1247–1257 [CrossRef] [PubMed].
    [Google Scholar]
  13. de Kraker M. E. , Jarlier V. , Monen J. C. , Heuer O. E. , van de Sande N. , Grundmann H. . ( 2013;). The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect 19: 860–868 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dobrindt U. , Agerer F. , Michaelis K. , Janka A. , Buchrieser C. , Samuelson M. , Svanborg C. , Gottschalk G. , Karch H. , Hacker J. . ( 2003;). Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185: 1831–1840 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fagan R. P. , Smith S. G. . ( 2007;). The Hek outer membrane protein of Escherichia coli is an auto-aggregating adhesin and invasin. FEMS Microbiol Lett 269: 248–255 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gibreel T. M. , Dodgson A. R. , Cheesbrough J. , Bolton F. J. , Fox A. J. , Upton M. . ( 2012a;). High metabolic potential may contribute to the success of ST131 uropathogenic Escherichia coli . J Clin Microbiol 50: 3202–3207 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gibreel T. M. , Dodgson A. R. , Cheesbrough J. , Fox A. J. , Bolton F. J. , Upton M. . ( 2012b;). Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from northwest England. J Antimicrob Chemother 67: 346–356 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hekker T. A. , Groeneveld A. B. , Simoons-Smit A. M. , de Man P. , Connell H. , MacLaren D. M. . ( 2000;). Role of bacterial virulence factors and host factors in the outcome of Escherichia coli bacteraemia. Eur J Clin Microbiol Infect Dis 19: 312–316 [CrossRef] [PubMed].
    [Google Scholar]
  19. Henderson J. P. , Crowley J. R. , Pinkner J. S. , Walker J. N. , Tsukayama P. , Stamm W. E. , Hooton T. M. , Hultgren S. J. . ( 2009;). Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli . PLoS Pathog 5: e1000305 [CrossRef] [PubMed].
    [Google Scholar]
  20. Homann C. , Varming K. , Høgåsen K. , Mollnes T. E. , Graudal N. , Thomsen A. C. , Garred P. . ( 1997;). Acquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. Gut 40: 544–549 [CrossRef] [PubMed].
    [Google Scholar]
  21. Horner C. , Fawley W. , Morris K. , Parnell P. , Denton M. , Wilcox M. . ( 2014;). Escherichia coli bacteraemia: 2 years of prospective regional surveillance (2010-12). J Antimicrob Chemother 69: 91–100 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hui C. Y. , Guo Y. , He Q. S. , Peng L. , Wu S. C. , Cao H. , Huang S. H. . ( 2010;). Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol 54: 452–459 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jauréguy F. , Carbonnelle E. , Bonacorsi S. , Clec'h C. , Casassus P. , Bingen E. , Picard B. , Nassif X. , Lortholary O. . ( 2007;). Host and bacterial determinants of initial severity and outcome of Escherichia coli sepsis. Clin Microbiol Infect 13: 854–862 [CrossRef] [PubMed].
    [Google Scholar]
  24. Johnson J. R. . ( 1991;). Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4: 80–128 [PubMed].
    [Google Scholar]
  25. Johnson J. R. , Menard M. , Johnston B. , Kuskowski M. A. , Nichol K. , Zhanel G. G. . ( 2009;). Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother 53: 2733–2739 [CrossRef] [PubMed].
    [Google Scholar]
  26. Johnson J. R. , Johnston B. , Clabots C. , Kuskowski M. A. , Castanheira M. . ( 2010;). Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 51: 286–294 [CrossRef] [PubMed].
    [Google Scholar]
  27. Jolley K. A. , Maiden M. C. . ( 2010;). BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kaper J. B. , Nataro J. P. , Mobley H. L. . ( 2004;). Pathogenic Escherichia coli . Nat Rev Microbiol 2: 123–140 [CrossRef] [PubMed].
    [Google Scholar]
  29. Köhler C. D. , Dobrindt U. . ( 2011;). What defines extraintestinal pathogenic Escherichia coli?. Int J Med Microbiol 301: 642–647 [CrossRef] [PubMed].
    [Google Scholar]
  30. Laupland K. B. , Gregson D. B. , Church D. L. , Ross T. , Pitout J. D. . ( 2008;). Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clin Microbiol Infect 14: 1041–1047 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lefort A. , Panhard X. , Clermont O. , Woerther P. L. , Branger C. , Mentré F. , Fantin B. , Wolff M. , Denamur E. , COLIBAFI Group . ( 2011;). Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol 49: 777–783 [CrossRef] [PubMed].
    [Google Scholar]
  32. Lodinová-Zˇádniková R. , Sonnenborn U. . ( 1997;). Effect of preventive administration of a nonpathogenic Escherichia coli strain on the colonization of the intestine with microbial pathogens in newborn infants. Biol Neonate 71: 224–232 [CrossRef] [PubMed].
    [Google Scholar]
  33. Miajlovic H. , Smith S. G. . ( 2014;). Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 354: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  34. Miajlovic H. , Cooke N. M. , Moran G. P. , Rogers T. R. , Smith S. G. . ( 2014;). Response of extraintestinal pathogenic Escherichia coli to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid. Infect Immun 82: 298–305 [CrossRef] [PubMed].
    [Google Scholar]
  35. Miles A. A. , Misra S. S. , Irwin J. O. . ( 1938;). The estimation of the bactericidal power of the blood. J Hyg (Lond) 38: 732–749 [CrossRef] [PubMed].
    [Google Scholar]
  36. Mills M. , Meysick K. C. , O'Brien A. D. . ( 2000;). Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68: 5869–5880 [CrossRef] [PubMed].
    [Google Scholar]
  37. Mobley H. L. , Green D. M. , Trifillis A. L. , Johnson D. E. , Chippendale G. R. , Lockatell C. V. , Jones B. D. , Warren J. W. . ( 1990;). Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58: 1281–1289 [PubMed].
    [Google Scholar]
  38. Mulvey M. A. , Schilling J. D. , Martinez J. J. , Hultgren S. J. . ( 2000;). Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A 97: 8829–8835 [CrossRef] [PubMed].
    [Google Scholar]
  39. Nicolas-Chanoine M. H. , Blanco J. , Leflon-Guibout V. , Demarty R. , Alonso M. P. , Caniça M. M. , Park Y. J. , Lavigne J. P. , Pitout J. , Johnson J. R. . ( 2008;). Intercontinental emergence of Escherichia coli clone O25 : H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61: 273–281 [CrossRef] [PubMed].
    [Google Scholar]
  40. Nicolas-Chanoine M. H. , Bertrand X. , Madec J. Y. . ( 2014;). Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27: 543–574 [CrossRef] [PubMed].
    [Google Scholar]
  41. Nipič D. , Podlesek Z. , Budič M. , Črnigoj M. , Zˇgur-Bertok D. . ( 2013;). Escherichia coli uropathogenic-specific protein, Usp, is a bacteriocin-like genotoxin. J Infect Dis 208: 1545–1552 [CrossRef] [PubMed].
    [Google Scholar]
  42. Oh H. , Siano B. , Diamond S. . ( 2008;). Neutrophil isolation protocol. J Vis Exp 17: 745 [PubMed].
    [Google Scholar]
  43. Ortega M. , Marco F. , Soriano A. , Almela M. , Martínez J. A. , Muñoz A. , Mensa J. . ( 2009;). Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 63: 568–574 [CrossRef] [PubMed].
    [Google Scholar]
  44. Peralta G. , Roiz M. P. , Sánchez M. B. , Garrido J. C. , Ceballos B. , Rodríguez-Lera M. J. , Mateos F. , De Benito I. . ( 2007;). Time-to-positivity in patients with Escherichia coli bacteraemia. Clin Microbiol Infect 13: 1077–1082 [CrossRef] [PubMed].
    [Google Scholar]
  45. Phan M.-D. , Peters K. M. , Sarkar S. , Lukowski S. W. , Allsopp L. P. , Gomes Moriel D. G. , Achard M. E. S. , Totsika M. , Marshall V. M. , other authors . ( 2013;). The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 9: e1003834 [CrossRef] [PubMed].
    [Google Scholar]
  46. Pitout J. D. , Laupland K. B. , Church D. L. , Menard M. L. , Johnson J. R. . ( 2005;). Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum β-lactamases. Antimicrob Agents Chemother 49: 4667–4670 [CrossRef] [PubMed].
    [Google Scholar]
  47. Qin X. , Gao B. . ( 2006;). The complement system in liver diseases. Cell Mol Immunol 3: 333–340 [PubMed].
    [Google Scholar]
  48. Russo T. A. , Johnson J. R. . ( 2003;). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5: 449–456 [CrossRef] [PubMed].
    [Google Scholar]
  49. Sarma J. V. , Ward P. A. . ( 2011;). The complement system. Cell Tissue Res 343: 227–235 [CrossRef] [PubMed].
    [Google Scholar]
  50. Skaar E. P. . ( 2010;). The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6: e1000949 [CrossRef] [PubMed].
    [Google Scholar]
  51. Skjøt-Rasmussen L. , Ejrnæs K. , Lundgren B. , Hammerum A. M. , Frimodt-Møller N. . ( 2012;). Virulence factors and phylogenetic grouping of Escherichia coli isolates from patients with bacteraemia of urinary tract origin relate to sex and hospital- vs. community-acquired origin. Int J Med Microbiol 302: 129–134 [CrossRef] [PubMed].
    [Google Scholar]
  52. Smith Y. C. , Rasmussen S. B. , Grande K. K. , Conran R. M. , O'Brien A. D. . ( 2008;). Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76: 2978–2990 [CrossRef] [PubMed].
    [Google Scholar]
  53. Smith S. N. , Hagan E. C. , Lane M. C. , Mobley H. L. . ( 2010;). Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. MBio 1: e00262–e00210 [CrossRef] [PubMed].
    [Google Scholar]
  54. Subashchandrabose S. , Smith S. N. , Spurbeck R. R. , Kole M. M. , Mobley H. L. . ( 2013;). Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog 9: e1003788 [CrossRef] [PubMed].
    [Google Scholar]
  55. Ulett G. C. , Valle J. , Beloin C. , Sherlock O. , Ghigo J. M. , Schembri M. A. . ( 2007;). Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75: 3233–3244 [CrossRef] [PubMed].
    [Google Scholar]
  56. Ulett G. C. , Totsika M. , Schaale K. , Carey A. J. , Sweet M. J. , Schembri M. A. . ( 2013;). Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 16: 100–107 [CrossRef] [PubMed].
    [Google Scholar]
  57. Vimont S. , Boyd A. , Bleibtreu A. , Bens M. , Goujon J. M. , Garry L. , Clermont O. , Denamur E. , Arlet G. , Vandewalle A. . ( 2012;). The CTX-M-15-producing Escherichia coli clone O25b : H4-ST131 has high intestine colonization and urinary tract infection abilities. PLoS One 7: e46547 [CrossRef] [PubMed].
    [Google Scholar]
  58. Watts R. E. , Totsika M. , Challinor V. L. , Mabbett A. N. , Ulett G. C. , De Voss J. J. , Schembri M. A. . ( 2012;). Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli . Infect Immun 80: 333–344 [CrossRef] [PubMed].
    [Google Scholar]
  59. Weissman S. J. , Johnson J. R. , Tchesnokova V. , Billig M. , Dykhuizen D. , Riddell K. , Rogers P. , Qin X. , Butler-Wu S. , other authors . ( 2012;). High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli . Appl Environ Microbiol 78: 1353–1360 [CrossRef] [PubMed].
    [Google Scholar]
  60. Wirth T. , Falush D. , Lan R. , Colles F. , Mensa P. , Wieler L. H. , Karch H. , Reeves P. R. , Maiden M. C. , other authors . ( 2006;). Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60: 1136–1151 [CrossRef] [PubMed].
    [Google Scholar]
  61. Wurpel D. J. , Totsika M. , Allsopp L. P. , Hartley-Tassell L. E. , Day C. J. , Peters K. M. , Sarkar S. , Ulett G. C. , Yang J. , other authors . ( 2014;). F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PLoS One 9: e93177 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000200
Loading
/content/journal/jmm/10.1099/jmm.0.000200
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error