1887

Abstract

Non-tuberculous mycobacteria (NTM) infections are increasingly being reported worldwide. They are a major concern for healthcare professionals for multiple reasons, ranging from the intrinsic resistance of NTM to most conventionally utilized antimicrobials to inharmonious diagnostic criteria utilized for evaluation of NTM-infected patients, leading to high morbidity. In this review, we highlight the paucity of drugs having potent anti-NTM activity amongst the new antimicrobials currently under various stages of development for anti-tubercular activity and issue a call for the establishment of a concerted dedicated drug discovery pipeline targeting NTM.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000198
2016-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/1.html?itemId=/content/journal/jmm/10.1099/jmm.0.000198&mimeType=html&fmt=ahah

References

  1. Broda A., Jebbari H., Beaton K., Mitchell S., Drobniewski F. 2013; Comparative drug resistance of Mycobacterium abscessus and M. chelonae isolates from patients with and without cystic fibrosis in the United Kingdom. J Clin Microbiol 51:217–223 [View Article][PubMed]
    [Google Scholar]
  2. Brown-Elliott B. A., Nash K. A., Wallace R. J. Jr 2012; Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582 [View Article][PubMed]
    [Google Scholar]
  3. Bryant J. M., Grogono D. M., Greaves D., Foweraker J., Roddick I., Inns T., Reacher M., Haworth C. S., Curran M. D., other authors. 2013; Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381:1551–1560 [View Article][PubMed]
    [Google Scholar]
  4. Christophe T., Jackson M., Jeon H. K., Fenistein D., Contreras-Dominguez M., Kim J., Genovesio A., Carralot J. P., Ewann F., other authors. 2009; High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 5:e1000645 [View Article][PubMed]
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., other authors. 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  6. Cynamon M., Jureller J., Desai B., Ramachandran K., Sklaney M., Grossman T. H. 2012; In vitro activity of TP-271 against Mycobacterium abscessus, Mycobacterium fortuitum, and Nocardia species. Antimicrob Agents Chemother 56:3986–3988 [View Article][PubMed]
    [Google Scholar]
  7. Davidson R. M., Hasan N. A., Reynolds P. R., Totten S., Garcia B., Levin A., Ramamoorthy P., Heifets L., Daley C. L., Strong M. 2014; Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 52:3573–3582 [View Article][PubMed]
    [Google Scholar]
  8. De Groote M. A., Johnson L., Podell B., Brooks E., Basaraba R., Gonzalez-Juarrero M. 2014; GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus . J Antimicrob Chemother 69:1057–1064 [View Article][PubMed]
    [Google Scholar]
  9. Disratthakit A., Doi N. 2010; In vitro activities of DC-159a, a novel fluoroquinolone, against Mycobacterium species. Antimicrob Agents Chemother 54:2684–2686 [View Article][PubMed]
    [Google Scholar]
  10. Doi N., Disratthakit A. Characteristic anti-mycobacterial spectra of the novel anti-TB drug candidates OPC-67683 and PA-824. http://www.microbiotix.com/posters/ICAAC-2006/POSTERS%20BY%20OTHERS/Poster%20(F1.%201377a)%20for%20OPC%20in%20vitro,%2046th%20ICAAC%202006.pdf
    [Google Scholar]
  11. Dubuisson T., Bogatcheva E., Krishnan M. Y., Collins M. T., Einck L., Nacy C. A., Reddy V. M. 2010; In vitro antimicrobial activities of capuramycin analogues against non-tuberculous mycobacteria. J Antimicrob Chemother 65:2590–2597 [View Article][PubMed]
    [Google Scholar]
  12. Griffith D. E. 2011; The talking Mycobacterium abscessus blues. Clin Infect Dis 52:572–574 [View Article][PubMed]
    [Google Scholar]
  13. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G., other authors. 2007; An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416 [View Article][PubMed]
    [Google Scholar]
  14. Hotoda H., Furukawa M., Daigo M., Murayama K., Kaneko M., Muramatsu Y., Ishii M. M., Miyakoshi S., Takatsu T., other authors. 2003; Synthesis and antimycobacterial activity of capuramycin analogues. Part 1: substitution of the azepan-2-one moiety of capuramycin. Bioorg Med Chem Lett 13:2829–2832 [View Article][PubMed]
    [Google Scholar]
  15. Huitric E., Verhasselt P., Andries K., Hoffner S. E. 2007; In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51:4202–4204 [View Article][PubMed]
    [Google Scholar]
  16. Ishizaki Y., Hayashi C., Inoue K., Igarashi M., Takahashi Y., Pujari V., Crick D. C., Brennan P. J., Nomoto A. 2013; Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem 288:30309–30319 [View Article][PubMed]
    [Google Scholar]
  17. Johnson M. M., Odell J. A. 2014; Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220[PubMed]
    [Google Scholar]
  18. Koga T., Fukuoka T., Doi N., Harasaki T., Inoue H., Hotoda H., Kakuta M., Muramatsu Y., Yamamura N., other authors. 2004; Activity of capuramycin analogues against Mycobacterium tuberculosis and Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo . J Antimicrob Chemother 54:755–760 [View Article][PubMed]
    [Google Scholar]
  19. Koul A., Dendouga N., Vergauwen K., Molenberghs B., Vranckx L., Willebrords R., Ristic Z., Lill H., Dorange I., other authors. 2007; Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324 [View Article][PubMed]
    [Google Scholar]
  20. Lerat I., Cambau E., Roth Dit Bettoni R., Gaillard J. L., Jarlier V., Truffot C., Veziris N. 2014; In vivo evaluation of antibiotic activity against Mycobacterium abscessus . J Infect Dis 209:905–912 [View Article][PubMed]
    [Google Scholar]
  21. Lounis N., Gevers T., Van den Berg J., Vranckx L., Andries K. 2009; ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob Agents Chemother 53:4927–4929 [View Article][PubMed]
    [Google Scholar]
  22. Makarov V., Manina G., Mikusova K., Möllmann U., Ryabova O., Saint-Joanis B., Dhar N., Pasca M. R., Buroni S., other authors. 2009; Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804 [View Article][PubMed]
    [Google Scholar]
  23. Manjunatha U., Boshoff H. I., Barry C. E. 2009; The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2:215–218 [View Article][PubMed]
    [Google Scholar]
  24. Maurer F. P., Bruderer V. L., Ritter C., Castelberg C., Bloemberg G. V., Böttger E. C. 2014; Lack of antimicrobial bactericidal activity in Mycobacterium abscessus . Antimicrob Agents Chemother 58:3828–3836 [View Article][PubMed]
    [Google Scholar]
  25. Nash K. A., Brown-Elliott B. A., Wallace R. J. Jr 2009; A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae . Antimicrob Agents Chemother 53:1367–1376 [View Article][PubMed]
    [Google Scholar]
  26. Ordway D. J., Orme I. M. 2011; Animal models of mycobacteria infection. Curr Protoc Immunol 94:1951–19550
    [Google Scholar]
  27. Protopopova M., Hanrahan C., Nikonenko B., Samala R., Chen P., Gearhart J., Einck L., Nacy C. A. 2005; Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974 [View Article][PubMed]
    [Google Scholar]
  28. Rao S. P., Lakshminarayana S. B., Kondreddi R. R., Herve M., Camacho L. R., Bifani P., Kalapala S. K., Jiricek J., Ma N. L., other authors. 2013; Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis. Sci Transl Med 5:214ra168 [CrossRef]
    [Google Scholar]
  29. Sacksteder K. A., Protopopova M., Barry C. E. III, Andries K., Nacy C. A. 2012; Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol 7:823–837 [View Article][PubMed]
    [Google Scholar]
  30. Shallom S. J., Gardina P. J., Myers T. G., Sebastian Y., Conville P., Calhoun L. B., Tettelin H., Olivier K. N., Uzel G., other authors. 2013; New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J Clin Microbiol 51:2943–2949 [View Article][PubMed]
    [Google Scholar]
  31. Starosta A. L., Fyfe C., O'brien W., Wilson D. N., Sutcliffe J., Grossman T. 2010; Target-and resistance-based mechanistic studies with fluorocyclines TP-434 and TP-271. http://tphase.com/TPhase/media/TetraPhase/PDF/Posters/F1-2160.pdf
    [Google Scholar]
  32. Stein G. E., Craig W. A. 2006; Tigecycline: a critical analysis. Clin Infect Dis 43:518–524 [View Article][PubMed]
    [Google Scholar]
  33. Stover C. K., Warrener P., VanDevanter D. R., Sherman D. R., Arain T. M., Langhorne M. H., Anderson S. W., Towell J. A., Yuan Y., other authors. 2000; A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966 [View Article][PubMed]
    [Google Scholar]
  34. Tahlan K., Wilson R., Kastrinsky D. B., Arora K., Nair V., Fischer E., Barnes S. W., Walker J. R., Alland D., other authors. 2012; SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis . Antimicrob Agents Chemother 56:1797–1809 [View Article][PubMed]
    [Google Scholar]
  35. Tettelin H., Davidson R. M., Agrawal S., Aitken M. L., Shallom S., Hasan N. A., Strong M., de Moura V. C. N., De Groote M. A., other authors. 2014; High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 20:364–371 [View Article][PubMed]
    [Google Scholar]
  36. Trefzer C., Škovierová H., Buroni S., Bobovská A., Nenci S., Molteni E., Pojer F., Pasca M. R., Makarov V., other authors. 2012; Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-d-ribofuranose 2′-oxidase DprE1. J Am Chem Soc 134:912–915 [View Article][PubMed]
    [Google Scholar]
  37. Wallace R. J. Jr, Brown-Elliott B. A., Crist C. J., Mann L., Wilson R. W. 2002; Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother 46:3164–3167 [View Article][PubMed]
    [Google Scholar]
  38. Wallace R. J. Jr, Dukart G., Brown-Elliott B. A., Griffith D. E., Scerpella E. G., Marshall B. 2014; Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother 69:1945–1953 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000198
Loading
/content/journal/jmm/10.1099/jmm.0.000198
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error