1887

Abstract

Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for antibacterial activity, we evaluated the antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000195
2016-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/19.html?itemId=/content/journal/jmm/10.1099/jmm.0.000195&mimeType=html&fmt=ahah

References

  1. Arnold S. R., Elias D., Buckingham S. C., Thomas E. D., Novais E., Arkader A., Howard C.. ( 2006;). Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop 26: 703–708 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bal W., Sokołowska M., Kurowska E., Faller P.. ( 2013;). Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830: 5444–5455 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bocchini C. E., Hulten K. G., Mason E. O. Jr, Gonzalez B. E., Hammerman W. A., Kaplan S. L.. ( 2006;). Panton-Valentine leukocidin genes are associated with enhanced inflammatory response and local disease in acute hematogenous Staphylococcus aureus osteomyelitis in children. Pediatrics 117: 433–440 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bolton L. L., Girolami S., Corbett L., van Rijswijk L.. ( 2014;). The Association for the Advancement of Wound Care (AAWC) venous and pressure ulcer guidelines. Ostomy Wound Manage 60: 24–66 [PubMed].
    [Google Scholar]
  5. Centers for Disease Control and Prevention ( 2007;). Severe methicillin-resistant Staphylococcus aureus community-acquired pneumonia associated with influenza - Louisiana and Georgia, December 2006 - January 2007. MMWR Morb Mortal Wkly Rep 56: 325–329.
    [Google Scholar]
  6. Chambers H. F., Deleo F. R.. ( 2009;). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–641 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cunningham T. M., Koehl J. L., Summers J. S., Haydel S. E.. ( 2010;). pH-Dependent metal ion toxicity influences the antibacterial activity of two natural mineral mixtures. PLoS One 5: e9456 [CrossRef] [PubMed].
    [Google Scholar]
  8. David M. Z., Daum R. S.. ( 2010;). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23: 616–687 [CrossRef] [PubMed].
    [Google Scholar]
  9. Filon F. L., D'Agostin F., Crosera M., Adami G., Bovenzi M., Maina G.. ( 2009;). In vitro absorption of metal powders through intact and damaged human skin. Toxicol In Vitro 23: 574–579 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fortunov R. M., Hulten K. G., Hammerman W. A., Mason E. O. Jr, Kaplan S. L.. ( 2006;). Community-acquired Staphylococcus aureus infections in term and near-term previously healthy neonates. Pediatrics 118: 874–881 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fraunholz M., Sinha B.. ( 2012;). Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol 2: 43 [CrossRef] [PubMed].
    [Google Scholar]
  12. Haydel S. E., Remenih C. M., Williams L. B.. ( 2008;). Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61: 353–361 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kennedy L. A., Gill J. A., Schultz M. E., Irmler M., Gordin F. M.. ( 2010;). Inside-out: the changing epidemiology of methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 31: 983–985 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim P. W., Sorbello A. F., Wassel R. T., Pham T. M., Tonning J. M., Nambiar S.. ( 2012;). Eosinophilic pneumonia in patients treated with daptomycin: review of the literature and US FDA adverse event reporting system reports. Drug Saf 35: 447–457 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kwong J. C., Chua K., Charles P. G. P.. ( 2012;). Managing severe community-acquired pneumonia due to community methicillin-resistant Staphylococcus aureus (MRSA). Curr Infect Dis Rep 14: 330–338 [CrossRef] [PubMed].
    [Google Scholar]
  16. Liu C., Bayer A., Cosgrove S. E., Daum R. S., Fridkin S. K., Gorwitz R. J., Kaplan S. L., Karchmer A. W., Levine D. P., other authors. ( 2011;). Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 52: 285–292 [CrossRef] [PubMed].
    [Google Scholar]
  17. MacEwan D., Wilson M.. ( 1980;). Interlayer and intercalation complexes of clay minerals. . In Crystal Structures of Clay Minerals and their X-ray Identification, pp. 197–248. Edited by Brindley G., Brown G.. London: Mineralogical Society;.
    [Google Scholar]
  18. McLaren A. D.. ( 1963;). Biochemistry and soil science. Science 141: 1141–1147 [CrossRef] [PubMed].
    [Google Scholar]
  19. Miller L. G., Perdreau-Remington F., Rieg G., Mehdi S., Perlroth J., Bayer A. S., Tang A. W., Phung T. O., Spellberg B.. ( 2005;). Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 352: 1445–1453 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mulligan M. E., Murray-Leisure K. A., Ribner B. S., Standiford H. C., John J. F., Korvick J. A., Kauffman C. A., Yu V. L.. ( 1993;). Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 94: 313–328 [CrossRef] [PubMed].
    [Google Scholar]
  21. Murray H.. ( 2006;). Bentonite applications. . In Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays, pp. 111–130 Amsterdam: Elsevier Science; [CrossRef].
    [Google Scholar]
  22. Nunn J.. ( 2002;). Ancient Egyptian Medicine London: Red River Books;.
    [Google Scholar]
  23. Otto C. C., Haydel S. E.. ( 2013;). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS One 8: e64068 [CrossRef] [PubMed].
    [Google Scholar]
  24. Otto C. C., Koehl J. L., Solanky D., Haydel S. E.. ( 2014;). Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PLoS One 9: e115172 [CrossRef] [PubMed].
    [Google Scholar]
  25. Pannaraj P. S., Hulten K. G., Gonzalez B. E., Mason E. O. Jr, Kaplan S. L.. ( 2006;). Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 43: 953–960 [CrossRef] [PubMed].
    [Google Scholar]
  26. Prabaker K., Weinstein R. A.. ( 2011;). Trends in antimicrobial resistance in intensive care units in the United States. Curr Opin Crit Care 17: 472–479 [CrossRef] [PubMed].
    [Google Scholar]
  27. Trengove N. J., Langton S. R., Stacey M. C.. ( 1996;). Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen 4: 234–239 [CrossRef] [PubMed].
    [Google Scholar]
  28. Velde B.. ( 1995;). Composition and mineralogy of clay minerals. . In Origin and Mineralogy of Clays, pp. 8–42 Berlin: Springer; [CrossRef].
    [Google Scholar]
  29. Watkins R. R., David M. Z., Salata R. A.. ( 2012;). Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J Med Microbiol 61: 1179–1193 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000195
Loading
/content/journal/jmm/10.1099/jmm.0.000195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error