1887

Abstract

The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes. In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10 c.f.u. ml, recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 h and the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000192
2016-01-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/48.html?itemId=/content/journal/jmm/10.1099/jmm.0.000192&mimeType=html&fmt=ahah

References

  1. Banér J., Isaksson A., Waldenström E., Jarvius J., Landegren U., Nilsson M.. ( 2003;). Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res 31: e103 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barišić I., Schoenthaler S., Ke R., Nilsson M., Noehammer C., Wiesinger-Mayr H.. ( 2013;). Multiplex detection of antibiotic resistance genes using padlock probes. Diagn Microbiol Infect Dis 77: 118–125 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barišić I., Mitteregger D., Hirschl A. M., Noehammer C., Wiesinger-Mayr H.. ( 2014;). High diversity of beta-lactamases in the General Hospital Vienna verified by whole genome sequencing and statistical analysis. Infect Genet Evol 27: 408–417 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bush K.. ( 2010;). Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13: 558–564 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cuzon G., Naas T., Bogaerts P., Glupczynski Y., Nordmann P.. ( 2012;). Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother 67: 1865–1869 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G.. ( 2010;). Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65: 490–495 [CrossRef] [PubMed].
    [Google Scholar]
  7. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. ( 2008;). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461–2470 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gautier L., Cope L., Bolstad B. M., Irizarry R. A.. ( 2004;). affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hall B. G., Barlow M.. ( 2003;). Structure-based phylogenies of the serine beta-lactamases. J Mol Evol 57: 255–260 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hall B. G., Barlow M.. ( 2004;). Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updat 7: 111–123 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hardenbol P., Yu F., Belmont J., Mackenzie J., Bruckner C., Brundage T., Boudreau A., Chow S., Eberle J., other authors. ( 2005;). Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res 15: 269–275 [CrossRef] [PubMed].
    [Google Scholar]
  12. Koltai H., Weingarten-Baror C.. ( 2008;). Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res 36: 2395–2405 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lee Y. J., van Nostrand J. D., Tu Q., Lu Z., Cheng L., Yuan T., Deng Y., Carter M. Q., He Z., other authors. ( 2013;). The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities. ISME J 7: 1974–1984 [CrossRef] [PubMed].
    [Google Scholar]
  14. Leinberger D. M., Grimm V., Rubtsova M., Weile J., Schröppel K., Wichelhaus T. A., Knabbe C., Schmid R. D., Bachmann T. T.. ( 2010;). Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. J Clin Microbiol 48: 460–471 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  16. Mussap M., Molinari M. P., Senno E., Gritti P., Soro B., Mannelli S., Fabris C.. ( 2007;). New diagnostic tools for neonatal sepsis: the role of a real-time polymerase chain reaction for the early detection and identification of bacterial and fungal species in blood samples. J Chemother 19: (Suppl. 2), 31–34 [PubMed].
    [Google Scholar]
  17. Naas T., Cuzon G., Truong H., Bernabeu S., Nordmann P.. ( 2010;). Evaluation of a DNA microarray, the Check-Points ESBL/KPC array, for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and KPC carbapenemases. Antimicrob Agents Chemother 54: 3086–3092 [CrossRef] [PubMed].
    [Google Scholar]
  18. Naas T., Cuzon G., Bogaerts P., Glupczynski Y., Nordmann P.. ( 2011;). Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol 49: 1608–1613 [CrossRef] [PubMed].
    [Google Scholar]
  19. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U.. ( 1994;). Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265: 2085–2088 [CrossRef] [PubMed].
    [Google Scholar]
  20. Porreca G. J., Zhang K., Li J. B., Xie B., Austin D., Vassallo S. L., LeProust E. M., Peck B. J., Emig C. J., other authors. ( 2007;). Multiplex amplification of large sets of human exons. Nat Methods 4: 931–936 [CrossRef] [PubMed].
    [Google Scholar]
  21. Smyth G. K.. ( 2004;). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: article 3.
    [Google Scholar]
  22. Tibshirani R., Hastie T., Narasimhan B., Chu G.. ( 2002;). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99: 6567–6572 [CrossRef] [PubMed].
    [Google Scholar]
  23. Wellinghausen N., Kochem A.-J., Disqué C., Mühl H., Gebert S., Winter J., Matten J., Sakka S. G.. ( 2009;). Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 47: 2759–2765 [CrossRef] [PubMed].
    [Google Scholar]
  24. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F. M., Larsen M. V.. ( 2012;). Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67: 2640–2644 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000192
Loading
/content/journal/jmm/10.1099/jmm.0.000192
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error