1887

Abstract

is one of the most common sexually transmitted pathogens in the world and often causes chronic inflammatory diseases that are insensitive to antibiotics. The type 3 secretion system (T3SS) of pathogenic bacteria is a promising target for therapeutic intervention aimed at bacterial virulence and can be an attractive alternative for the treatment of chronic infections. Recently, we have shown that a small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones produced through the chemical modification of the thiohydrazides of oxamic acids, designated CL-55, inhibited the intracellular growth of in a T3SS-dependent manner. To assess the feasibility of CL-55 as a therapeutic agent, our aim was to determine which point(s) in the developmental cycle CL-55 affects. We found that CL-55 had no effect on the adhesion of elementary bodies (EBs) to host cells but significantly suppressed EB internalization. We further found that CL-55 inhibited the intracellular division of reticulate bodies (RBs). An ultrastructural analysis revealed loss of contact between the RBs and the inclusion membrane in the presence of CL-55. Finally, we found that our T3SS inhibitor prevented the persistence of in cell culture and its reversion to the infectious state. Our findings indicate that our T3SS inhibitor may be effective in the treatment of both productive and persistent infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000189
2016-01-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/91.html?itemId=/content/journal/jmm/10.1099/jmm.0.000189&mimeType=html&fmt=ahah

References

  1. Artyukhova O. A., Samorodov A. V.. ( 2013;). Development of an automatic segmentation algorithm for fluorescent microscopic images of cell culture preparations in microbiology tasks. Science and Education: electronic scientific and technical journal6 (in Russian) http://technomag.bmstu.ru/doc/574140.html [CrossRef].
    [Google Scholar]
  2. Artyukhova O. A., Kost E. A., Samorodov A. V., Didenko L. V.. ( 2013;). Automation of fluorescence microscopy analysis of chlamydia in cell culture. . In Proceedings of International Conference on Science and Education in XXI Century, Tambov (Russia), TRPO “Business-Science-Society”vol. 19 8–9.
    [Google Scholar]
  3. Bashmakov Y. K., Zigangirova N. A., Pashko Y. P., Kapotina L. N., Petyaev I. M.. ( 2010;). Chlamydia trachomatis growth inhibition and restoration of LDL-receptor level in HepG2 cells treated with mevastatin. Comp Hepatol 9: 3–9 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bavoil P. M., Hsia R.-C.. ( 1998;). Type III secretion in Chlamydia: a case of déjà vu?. Mol Microbiol 28: 860–862 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bavoil P. M., Hsia R., Ojcius D. M.. ( 2000;). Closing in on Chlamydia and its intracellular bag of tricks. Microbiology 146: 2723–2731 [CrossRef] [PubMed].
    [Google Scholar]
  6. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I.. ( 1994;). Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62: 3705–3711 [PubMed].
    [Google Scholar]
  7. Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., Beatty W. L., Caldwell H. D.. ( 2003;). Transcriptome analysis of chlamydial growth during IFN-γ-mediated persistence and reactivation. Proc Natl Acad Sci U S A 100: 15971–15976 [CrossRef] [PubMed].
    [Google Scholar]
  8. Byrne G. I.. ( 2001;). Chlamydial treatment failures: a persistent problem?. J Eur Acad Dermatol Venereol 15: 381 [CrossRef] [PubMed].
    [Google Scholar]
  9. Clark R. B., Schatzki P. F., Dalton H. P.. ( 1982;). Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13. Arch Microbiol 133: 278–282 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cornelis G. R.. ( 2006;). The type III secretion injectisome. Nat Rev Microbiol 4: 811–825 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dumoux M., Nans A., Saibil H. R., Hayward R. D.. ( 2015;). Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Curr Opin Microbiol 23: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  12. Garrity-Ryan L. K., Kim O. K., Balada-Llasat J. M., Bartlett V. J., Verma A. K., Fisher M. L., Castillo C., Songsungthong W., Tanaka S. K., other authors. ( 2010;). Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 78: 4683–4690 [CrossRef] [PubMed].
    [Google Scholar]
  13. Grier M. C., Garrity-Ryan L. K., Bartlett V. J., Klausner K. A., Donovan P. J., Dudley C., Alekshun M. N., Tanaka S. K., Draper M. P., other authors. ( 2010;). N-Hydroxybenzimidazole inhibitors of ExsA MAR transcription factor in Pseudomonas aeruginosa: in vitro anti-virulence activity and metabolic stability. Bioorg Med Chem Lett 20: 3380–3383 [CrossRef] [PubMed].
    [Google Scholar]
  14. Harper A., Pogson C. I., Jones M. L., Pearce J. H.. ( 2000;). Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun 68: 1457–1464 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hoare A., Timms P., Bavoil P. M., Wilson D. P.. ( 2008;). Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence. BMC Microbiol 8: 5–8 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hsia R. C., Pannekoek Y., Ingerowski E., Bavoil P. M.. ( 1997;). Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25: 351–359 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kauppi A. M., Nordfelth R., Hägglund U., Wolf-Watz H., Elofsson M.. ( 2003;). Salicylanilides are potent inhibitors of type III secretion in Yersinia. Adv Exp Med Biol 529: 97–100 [CrossRef] [PubMed].
    [Google Scholar]
  18. Klos A., Thalmann J., Peters J., Gérard H. C., Hudson A. P.. ( 2009;). The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced. FEMS Microbiol Lett 291: 120–126 [CrossRef] [PubMed].
    [Google Scholar]
  19. Koroleva E. A., Kobets N. V., Zayakin E. S., Luyksaar S. I., Shabalina L. A., Zigangirova N. A.. ( 2015;). Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital chlamydia model. BioMed Res Int 2015: 484853 [CrossRef] [PubMed].
    [Google Scholar]
  20. Matsumoto A.. ( 1973;). Fine structures of cell envelopes of chlamydia organisms as revealed by freeze-etching and negative staining techniques. J Bacteriol 116: 1355–1363 [PubMed].
    [Google Scholar]
  21. Matsumoto A.. ( 1982;). Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J Bacteriol 150: 358–364 [PubMed].
    [Google Scholar]
  22. Muschiol S., Bailey L., Gylfe A., Sundin C., Hultenby K., Bergström S., Elofsson M., Wolf-Watz H., Normark S., Henriques-Normark B.. ( 2006;). A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 103: 14566–14571 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pan N., Goguen J., Lee C.. ( 2007;). High throughput screening for small-molecule inhibitors of type III secretion in Yersinia pestis. Adv Exp Med Biol 603: 367–375 [CrossRef] [PubMed].
    [Google Scholar]
  24. Peters J., Wilson D. P., Myers G., Timms P., Bavoil P. M.. ( 2007;). Type III secretion à la Chlamydia. Trends Microbiol 15: 241–251 [CrossRef] [PubMed].
    [Google Scholar]
  25. Prantner D., Nagarajan U. M.. ( 2009;). Role for the chlamydial type III secretion apparatus in host cytokine expression. Infect Immun 77: 76–84 [CrossRef] [PubMed].
    [Google Scholar]
  26. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–212 [CrossRef] [PubMed].
    [Google Scholar]
  27. Skilton R. J., Cutcliffe L. T., Barlow D., Wang Y., Salim O., Lambden P. R., Clarke I. N.. ( 2009;). Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS One 4: e7723 [CrossRef] [PubMed].
    [Google Scholar]
  28. Valdivia R. H.. ( 2008;). Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11: 53–59 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wang J., Frohlich K. M., Buckner L., Quayle A. J., Luo M., Feng X., Beatty W., Hua Z., Rao X., other authors. ( 2011;). Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. Microbiology 157: 2759–2771 [CrossRef] [PubMed].
    [Google Scholar]
  30. Wilson D. P., Timms P., McElwain D. L., Bavoil P. M.. ( 2006;). Type III secretion, contact-dependent model for the intracellular development of Chlamydia. Bull Math Biol 68: 161–178 [CrossRef] [PubMed].
    [Google Scholar]
  31. Wolf K., Betts H. J., Chellas-Géry B., Hower S., Linton C. N., Fields K. A.. ( 2006;). Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol Microbiol 61: 1543–1555 [CrossRef] [PubMed].
    [Google Scholar]
  32. Zigangirova N. A., Gintsburg A. L.. ( 2011;). [Target-specific screening of antivirulence preparations for chronic infection therapy]. Zh Mikrobiol Epidemiol Immunobiol 4: 107–115 (in Russian).
    [Google Scholar]
  33. Zigangirova N. A., Zayakin E. S., Kapotina L. N., Kost E. A., Didenko L. V., Davydova D. Y., Rumyanceva J. P., Gintsburg A. L.. ( 2012a;). Development of chlamydial type III secretion system inhibitors for suppression of acute and chronic forms of chlamydial infection. Act Nat 4: 87–97 [PubMed].
    [Google Scholar]
  34. Zigangirova N. A., Nesterenko L. N., Tiganova I. G., Kost E. A.. ( 2012b;). [The role of the type-three secretion system of Gram-negative bacteria in regulation of chronic infections]. Mol Gen Mikrobiol Virusol 3: 3–13 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000189
Loading
/content/journal/jmm/10.1099/jmm.0.000189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error