1887

Abstract

The rapid rise in antibiotic-resistant pathogens is causing increased health concerns, and consequently there is an urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs), which have been isolated from a wide range of organisms, represent a very promising class of novel antimicrobials. In the present study, the analogue FL9, based on the amphibian AMP fallaxin, was studied to elucidate its mode of action and antibacterial activity against the human pathogen . Our data showed that FL9 may have a dual mode of action against . At concentrations around the MIC, FL9 bound DNA, inhibited DNA synthesis and induced the SOS DNA damage response, whereas at concentrations above the MIC the interaction between and FL9 led to membrane disruption. The antibacterial activity of the peptide was maintained over a wide range of NaCl and MgCl concentrations and at alkaline pH, while it was compromised by acidic pH and exposure to serum. Furthermore, at subinhibitory concentrations of FL9, responded by increasing the expression of two major virulence factor genes, namely the regulatory and , encoding α-haemolysin. In addition, the -encoded natural tolerance mechanisms included peptide cleavage and the addition of positive charge to the cell surface, both of which minimized the antimicrobial activity of FL9. Our results add new information about FL9 and its effect on , which may aid in the future development of analogues with improved therapeutic potential.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000177
2015-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/12/1504.html?itemId=/content/journal/jmm/10.1099/jmm.0.000177&mimeType=html&fmt=ahah

References

  1. Bernardo K., Pakulat N., Fleer S., Schnaith A., Utermöhlen O., Krut O., Müller S., Krönke M.. ( 2004;). Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 48: 546–555 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bokarewa M. I., Jin T., Tarkowski A.. ( 2006;). Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 38: 504–509 [CrossRef] [PubMed].
    [Google Scholar]
  3. Boucher H. W., Talbot G. H., Bradley J. S., Edwards J. E., Gilbert D., Rice L. B., Scheld M., Spellberg B., Bartlett J.. ( 2009;). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1–12 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brogden K. A.. ( 2005;). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 3: 238–250 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chan P. F., Foster S. J.. ( 1998;). The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology 144: 2469–2479 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cirz R. T., Jones M. B., Gingles N. A., Minogue T. D., Jarrahi B., Peterson S. N., Romesberg F. E.. ( 2007;). Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 189: 531–539 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cohn M. T., Kjelgaard P., Frees D., Penadés J. R., Ingmer H.. ( 2011;). Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology 157: 677–684 [CrossRef] [PubMed].
    [Google Scholar]
  8. Corrigan R. M., Foster T. J.. ( 2009;). An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid 61: 126–129 [CrossRef] [PubMed].
    [Google Scholar]
  9. Courcelle J., Hanawalt P. C.. ( 2003;). RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37: 611–646 [CrossRef] [PubMed].
    [Google Scholar]
  10. Davies J., Spiegelman G. B., Yim G.. ( 2006;). The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9: 445–453 [CrossRef] [PubMed].
    [Google Scholar]
  11. Diep B. A., Gill S. R., Chang R. F., Phan T. H., Chen J. H., Davidson M. G., Lin F., Lin J., Carleton H. A., other authors. ( 2006;). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367: 731–739 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dubin G.. ( 2002;). Extracellular proteases of Staphylococcus spp. Biol Chem 383: 1075–1086 [CrossRef] [PubMed].
    [Google Scholar]
  13. Falord M., Mäder U., Hiron A., Débarbouillé M., Msadek T.. ( 2011;). Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 6: e21323 [CrossRef] [PubMed].
    [Google Scholar]
  14. Goldfeder Y., Zaknoon F., Mor A.. ( 2010;). Experimental conditions that enhance potency of an antibacterial oligo-acyl-lysyl. Antimicrob Agents Chemother 54: 2590–2595 [CrossRef] [PubMed].
    [Google Scholar]
  15. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M.. ( 1997;). Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553–560 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gordon Y. J., Romanowski E. G., McDermott A. M.. ( 2005;). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30: 505–515 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gottschalk S., Ifrah D., Lerche S., Gottlieb C. T., Cohn M. T., Hiasa H., Hansen P. R., Gram L., Ingmer H., Thomsen L. E.. ( 2013;). The antimicrobial lysine-peptoid hybrid LP5 inhibits DNA replication and induces the SOS response in Staphylococcus aureus. BMC Microbiol 13: 192 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gunderson C. W., Segall A. M.. ( 2006;). DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol Microbiol 59: 1129–1148 [CrossRef] [PubMed].
    [Google Scholar]
  19. Herbert S., Barry P., Novick R. P.. ( 2001;). Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect Immun 69: 2996–3003 [CrossRef] [PubMed].
    [Google Scholar]
  20. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. ( 2002;). σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184: 5457–5467 [CrossRef] [PubMed].
    [Google Scholar]
  21. Huang H. W.. ( 2006;). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758: 1292–1302 [CrossRef] [PubMed].
    [Google Scholar]
  22. Iordanescu S., Surdeanu M.. ( 1976;). Two restriction and modification systems in Staphylococcus aureus NCTC8325. J Gen Microbiol 96: 277–281 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jenssen H., Hamill P., Hancock R. E.. ( 2006;). Peptide antimicrobial agents. Clin Microbiol Rev 19: 491–511 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A.. ( 2004;). Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172: 1169–1176 [CrossRef] [PubMed].
    [Google Scholar]
  25. Karlsson A., Saravia-Otten P., Tegmark K., Morfeldt E., Arvidson S.. ( 2001;). Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69: 4742–4748 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kobayashi S., Takeshima K., Park C. B., Kim S. C., Matsuzaki K.. ( 2000;). Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39: 8648–8654 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lee I. H., Cho Y., Lehrer R. I.. ( 1997;). Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 65: 2898–2903 [PubMed].
    [Google Scholar]
  28. Lehrer R. I., Rosenman M., Harwig S. S., Jackson R., Eisenhauer P.. ( 1991;). Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137: 167–173 [CrossRef] [PubMed].
    [Google Scholar]
  29. Li M., Cha D. J., Lai Y., Villaruz A. E., Sturdevant D. E., Otto M.. ( 2007;). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66: 1136–1147 [CrossRef] [PubMed].
    [Google Scholar]
  30. Makobongo M. O., Gancz H., Carpenter B. M., McDaniel D. P., Merrell D. S.. ( 2012;). The oligo-acyl lysyl antimicrobial peptide C12K-2β12 exhibits a dual mechanism of action and demonstrates strong in vivo efficacy against Helicobacter pylori. Antimicrob Agents Chemother 56: 378–390 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mercer D. K., O'Neil D. A.. ( 2013;). Peptides as the next generation of anti-infectives. Future Med Chem 5: 315–337 [CrossRef] [PubMed].
    [Google Scholar]
  32. Minahk C. J., Morero R. D.. ( 2003;). Inhibition of enterocin CRL35 antibiotic activity by mono- and divalent ions. Lett Appl Microbiol 37: 374–379 [CrossRef] [PubMed].
    [Google Scholar]
  33. Nielsen A., Nielsen K. F., Frees D., Larsen T. O., Ingmer H.. ( 2010;). Method for screening compounds that influence virulence gene expression in Staphylococcus aureus. Antimicrob Agents Chemother 54: 509–512 [CrossRef] [PubMed].
    [Google Scholar]
  34. Nielsen L. N., Roggenbuck M., Haaber J., Ifrah D., Ingmer H.. ( 2012;). Diverse modulation of spa transcription by cell wall active antibiotics in Staphylococcus aureus. BMC Res Notes 5: 457 [CrossRef] [PubMed].
    [Google Scholar]
  35. Nielsen S. L., Frimodt-Moller N., Kragelund B. B., Hansen P. R.. ( 2007;). Structure–activity study of the antibacterial peptide fallaxin. Protein Sci 16: 1969–1976 [CrossRef] [PubMed].
    [Google Scholar]
  36. Novick R.. ( 1967;). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33: 155–166 [CrossRef] [PubMed].
    [Google Scholar]
  37. Ohlsen K., Ziebuhr W., Koller K. P., Hell W., Wichelhaus T. A., Hacker J.. ( 1998;). Effects of subinhibitory concentrations of antibiotics on α-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 42: 2817–2823 [PubMed].
    [Google Scholar]
  38. Park C. B., Kim H. S., Kim S. C.. ( 1998;). Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244: 253–257 [CrossRef] [PubMed].
    [Google Scholar]
  39. Pasupuleti M., Schmidtchen A., Malmsten M.. ( 2012;). Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32: 143–171 [CrossRef] [PubMed].
    [Google Scholar]
  40. Patrzykat A., Friedrich C. L., Zhang L., Mendoza V., Hancock R. E. W.. ( 2002;). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46: 605–614 [CrossRef] [PubMed].
    [Google Scholar]
  41. Peschel A., Sahl H. G.. ( 2006;). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4: 529–536 [CrossRef] [PubMed].
    [Google Scholar]
  42. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Götz F.. ( 1999;). Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274: 8405–8410 [CrossRef] [PubMed].
    [Google Scholar]
  43. Peschel A., Jack R. W., Otto M., Collins L. V., Staubitz P., Nicholson G., Kalbacher H., Nieuwenhuizen W. F., Jung G., other authors. ( 2001;). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193: 1067–1076 [CrossRef] [PubMed].
    [Google Scholar]
  44. Radzishevsky I. S., Rotem S., Zaknoon F., Gaidukov L., Dagan A., Mor A.. ( 2005;). Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Antimicrob Agents Chemother 49: 2412–2420 [CrossRef] [PubMed].
    [Google Scholar]
  45. Rollins-Smith L. A., King J. D., Nielsen P. F., Sonnevend A., Conlon J. M.. ( 2005;). An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura: Leptodactylidae). Regul Pept 124: 173–178 [CrossRef] [PubMed].
    [Google Scholar]
  46. Rotem S., Radzishevsky I. S., Bourdetsky D., Navon-Venezia S., Carmeli Y., Mor A.. ( 2008;). Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J 22: 2652–2661 [CrossRef] [PubMed].
    [Google Scholar]
  47. Rozek A., Powers J. P., Friedrich C. L., Hancock R. E.. ( 2003;). Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42: 14130–14138 [CrossRef] [PubMed].
    [Google Scholar]
  48. Rydlo T., Rotem S., Mor A.. ( 2006;). Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions. Antimicrob Agents Chemother 50: 490–497 [CrossRef] [PubMed].
    [Google Scholar]
  49. Sahl H. G., Pag U., Bonness S., Wagner S., Antcheva N., Tossi A.. ( 2005;). Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 77: 466–475 [CrossRef] [PubMed].
    [Google Scholar]
  50. Sambrook J., Russel D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  51. Sarig H., Goldfeder Y., Rotem S., Mor A.. ( 2011;). Mechanisms mediating bactericidal properties and conditions that enhance the potency of a broad-spectrum oligo-acyl-lysyl. Antimicrob Agents Chemother 55: 688–695 [CrossRef] [PubMed].
    [Google Scholar]
  52. Sieprawska-Lupa M., Mydel P., Krawczyk K., Wójcik K., Puklo M., Lupa B., Suder P., Silberring J., Reed M., other authors. ( 2004;). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48: 4673–4679 [CrossRef] [PubMed].
    [Google Scholar]
  53. Smith B. T., Walker G. C.. ( 1998;). Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics 148: 1599–1610 [PubMed].
    [Google Scholar]
  54. Su L. Y., Willner D. L., Segall A. M.. ( 2010;). An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages. Antimicrob Agents Chemother 54: 1888–1899 [CrossRef] [PubMed].
    [Google Scholar]
  55. Thomsen L. E., Gottlieb C. T., Gottschalk S., Wodskou T. T., Kristensen H. H., Gram L., Ingmer H.. ( 2010;). The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiol 10: 307 [CrossRef] [PubMed].
    [Google Scholar]
  56. Worlitzsch D., Kaygin H., Steinhuber A., Dalhoff A., Botzenhart K., Döring G.. ( 2001;). Effects of amoxicillin, gentamicin, and moxi-floxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Chemother 45: 196–202 [CrossRef] [PubMed].
    [Google Scholar]
  57. Yaron S., Rydlo T., Shachar D., Mor A.. ( 2003;). Activity of dermaseptin K4-S4 against foodborne pathogens. Peptides 24: 1815–1821 [CrossRef] [PubMed].
    [Google Scholar]
  58. Zasloff M.. ( 2002;). Antimicrobial peptides of multicellular organisms. Nature 415: 389–395 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000177
Loading
/content/journal/jmm/10.1099/jmm.0.000177
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error