1887

Abstract

Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as spp., and yeasts, such as spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of and formed on human nail fragments . Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For , miltefosine at 8 μg ml inhibited biofilm formation by 93 %, whilst 256 μg ml reduced the metabolic activity of pre-formed nail biofilms by 93 %. Treatment with miltefosine at 1000 μg ml inhibited biofilm formation by 89 % and reduced the metabolic activity of pre-formed biofilms by 99 %. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for efficacy studies, especially in topical formulations for refractory disease treatment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000175
2015-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1436.html?itemId=/content/journal/jmm/10.1099/jmm.0.000175&mimeType=html&fmt=ahah

References

  1. Alastruey-Izquierdo A., Cuenca-Estrella M., Monzón A., Mellado E., Rodríguez-Tudela J. L. 2008; Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61:805–809 [View Article][PubMed]
    [Google Scholar]
  2. Baillie G. S., Douglas L. J. 2000; Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403 [View Article][PubMed]
    [Google Scholar]
  3. Baudraz-Rosselet F., Ruffieux C., Lurati M., Bontems O., Monod M. 2010; Onychomycosis insensitive to systemic terbinafine and azole treatments reveals non-dermatophyte moulds as infectious agents. Dermatology 220:164–168 [View Article][PubMed]
    [Google Scholar]
  4. Biswas C., Sorrell T. C., Djordjevic J. T., Zuo X., Jolliffe K. A., Chen S. C.-A. 2013; In vitro activity of miltefosine as a single agent and in combination with voriconazole or posaconazole against uncommon filamentous fungal pathogens. J Antimicrob Chemother 68:2842–2846 [View Article][PubMed]
    [Google Scholar]
  5. Biswas C., Zuo X., Chen S. C., Schibeci S. D., Forwood J. K., Jolliffe K. A., Sorrell T. C., Djordjevic J. T. 2014; Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genet Biol 67:71–81 [View Article][PubMed]
    [Google Scholar]
  6. Borba-Santos L. P., Gagini T., Ishida K., de Souza W., Rozental S. 2015; Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole. J Med Microbiol 64:415–422[PubMed] [CrossRef]
    [Google Scholar]
  7. Bourgeois G. P., Cafardi J. A., Sellheyer K., Andea A. A. 2010; Disseminated Fusarium originating from toenail paronychia in a neutropenic patient: a case report and review of the literature. Cutis 85:191–194[PubMed]
    [Google Scholar]
  8. Bueno J. G., Martinez C., Zapata B., Sanclemente G., Gallego M., Mesa A. C. 2010; In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin Exp Dermatol 35:658–663 [View Article][PubMed]
    [Google Scholar]
  9. Buot G., Toutous-Trellu L., Hennequin C. 2010; Swimming pool deck as environmental reservoir of Fusarium . Med Mycol 48:780–784 [View Article][PubMed]
    [Google Scholar]
  10. Burkhart C. N., Burkhart C. G., Gupta A. K. 2002; Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 47:629–631 [View Article][PubMed]
    [Google Scholar]
  11. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394 [View Article][PubMed]
    [Google Scholar]
  12. Chandra J., Patel J. D., Li J., Zhou G., Mukherjee P. K., McCormick T. S., Anderson J. M., Ghannoum M. A. 2005; Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl Environ Microbiol 71:8795–8801 [View Article][PubMed]
    [Google Scholar]
  13. Chi C. C., Wang S. H., Chou M. C. 2005; The causative pathogens of onychomycosis in southern Taiwan. Mycoses 48:413–420 [View Article][PubMed]
    [Google Scholar]
  14. CLSI 2008a Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts Approved Standard M27-A3 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  15. CLSI 2008b Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi Approved Standard , 2nd edn. M38-A2 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  16. de Araújo A. J., Souza M. A. J., Bastos O. M., de Oliveira J. C. 2003; [Occurrence of onychomycosis among patients attended in dermatology offices in the city of Rio de Janeiro, Brazil]. An Bras Dermatol 78:299–308 (in Portuguese) [View Article]
    [Google Scholar]
  17. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [View Article][PubMed]
    [Google Scholar]
  18. Dorlo T. P. C., Balasegaram M., Beijnen J. H., de Vries P. J. 2012; Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597 [View Article][PubMed]
    [Google Scholar]
  19. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36 [View Article][PubMed]
    [Google Scholar]
  20. Elewski B. E. 1998; Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev 11:415–429[PubMed]
    [Google Scholar]
  21. Figueiredo V. T., de Assis Santos D., Resende M. A., Hamdan J. S. 2007; Identification and in vitro antifungal susceptibility testing of 200 clinical isolates of Candida spp. responsible for fingernail infections. Mycopathologia 164:27–33 [View Article][PubMed]
    [Google Scholar]
  22. Foster K. W., Ghannoum M. A., Elewski B. E. 2004; Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002. J Am Acad Dermatol 50:748–752 [View Article][PubMed]
    [Google Scholar]
  23. Ghannoum M. A., Hajjeh R. A., Scher R., Konnikov N., Gupta A. K., Summerbell R., Sullivan S., Daniel R., Krusinski P., other authors. 2000; A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol 43:641–648[PubMed] [CrossRef]
    [Google Scholar]
  24. Gupta A. K., Taborda P., Taborda V., Gilmour J., Rachlis A., Salit I., Gupta M. A., MacDonald P., Cooper E. A., Summerbell R. C. 2000; Epidemiology and prevalence of onychomycosis in HIV-positive individuals. Int J Dermatol 39:746–753 [View Article][PubMed]
    [Google Scholar]
  25. Imamura Y., Chandra J., Mukherjee P. K., Lattif A. A., Szczotka-Flynn L. B., Pearlman E., Lass J. H., O'Donnell K., Ghannoum M. A. 2008; Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 52:171–182 [View Article][PubMed]
    [Google Scholar]
  26. Jayatilake J. A., Tilakaratne W. M., Panagoda G. J. 2009; Candidal onychomycosis: a mini-review. Mycopathologia 168:165–173 [View Article][PubMed]
    [Google Scholar]
  27. Jin Y., Yip H. K., Samaranayake Y. H., Yau J. Y., Samaranayake L. P. 2003; Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41:2961–2967 [View Article][PubMed]
    [Google Scholar]
  28. Jo Siu W. J. W., Tatsumi Y., Senda H., Pillai R., Nakamura T., Sone D., Fothergill A. 2013; Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 57:1610–1616 [View Article][PubMed]
    [Google Scholar]
  29. Kaur R., Kashyap B., Bhalla P. 2008; Onychomycosis – epidemiology, diagnosis and management. Indian J Med Microbiol 26:108–116 [View Article][PubMed]
    [Google Scholar]
  30. Kuhn D. M., George T., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46:1773–1780 [View Article][PubMed]
    [Google Scholar]
  31. Leonard R., Hardy J., van Tienhoven G., Houston S., Simmonds P., David M., Mansi J. 2001; Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 19:4150–4159[PubMed]
    [Google Scholar]
  32. Lurati M., Baudraz-Rosselet F., Vernez M., Spring P., Bontems O., Fratti M., Monod M. 2011; Efficacious treatment of non-dermatophyte mould onychomycosis with topical amphotericin B. Dermatology 223:289–292 [View Article][PubMed]
    [Google Scholar]
  33. Martinez L. R., Fries B. C. 2010; Fungal biofilms: relevance in the setting of human disease. Curr Fungal Infect Rep 4:266–275 [View Article][PubMed]
    [Google Scholar]
  34. Morales-Cardona C. A., Valbuena-Mesa M. C., Alvarado Z., Solorzano-Amador A. 2014; Non-dermatophyte mould onychomycosis: a clinical and epidemiological study at a dermatology referral centre in Bogota, Colombia. Mycoses 57:284–293 [View Article][PubMed]
    [Google Scholar]
  35. Mukherjee P. K., Chandra J., Kuhn D. M., Ghannoum M. A. 2003; Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340 [View Article][PubMed]
    [Google Scholar]
  36. Mukherjee P. K., Chandra J., Yu C., Sun Y., Pearlman E., Ghannoum M. A. 2012; Characterization of Fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Investig Ophthalmol & Vis Sci 53:4450–4457 [CrossRef]
    [Google Scholar]
  37. Nenoff P., Krüger C., Ginter-Hanselmayer G., Tietz H.-J. 2014; Mycology – an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges 12:188–209[PubMed]
    [Google Scholar]
  38. Nusbaum A. G., Kirsner R. S., Charles C. A. 2012; Biofilms in dermatology. Skin Therapy Lett 17:1–5[PubMed]
    [Google Scholar]
  39. Oliveira M. T., Specian A. F. L., Andrade C. G. T. J., França E. J. G., Furlaneto-Maia L., Furlaneto M. C. 2010; Interaction of Candida parapsilosis isolates with human hair and nail surfaces revealed by scanning electron microscopy analysis. Micron 41:604–608 [View Article][PubMed]
    [Google Scholar]
  40. Parlak A. H., Goksugur N., Karabay O. 2006; A case of melanonychia due to Candida albicans . Clin Exp Dermatol 31:398–400 [View Article][PubMed]
    [Google Scholar]
  41. Pfaller M. A., Sheehan D. J., Rex J. H. 2004; Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev 17:268–280 [View Article][PubMed]
    [Google Scholar]
  42. Pierce C. G., Uppuluri P., Tristan A. R., Wormley F. L. Jr, Mowat E., Ramage G., Lopez-Ribot J. L. 2008; A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–1500 [View Article][PubMed]
    [Google Scholar]
  43. Ramage G., Vandewalle K., Wickes B. L., López-Ribot J. L. 2001a; Characteristics of biofilm formation by Candida albicans . Rev Iberoam Micol 18:163–170[PubMed]
    [Google Scholar]
  44. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001b; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479 [View Article][PubMed]
    [Google Scholar]
  45. Ramage G., Bachmann S., Patterson T. F., Wickes B. L., López-Ribot J. L. 2002; Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980 [View Article][PubMed]
    [Google Scholar]
  46. Ramage G., Wickes B. L., López-Ribot J. L. 2008; [A seed and feed model for the formation of Candida albicans biofilms under flow conditions using an improved modified Robbins device]. Rev Iberoam Micol 25:37–40 (in Spanish) [View Article][PubMed]
    [Google Scholar]
  47. Ramage G., Rajendran R., Sherry L., Williams C. 2012; Fungal biofilm resistance. Int J Microbiol 2012:528521 [View Article][PubMed]
    [Google Scholar]
  48. Shemer A. 2012; Update: medical treatment of onychomycosis. Dermatol Ther (Heidelb) 25:582–593 [View Article][PubMed]
    [Google Scholar]
  49. Tong Z., Widmer F., Sorrell T. C., Guse Z., Jolliffe K. A., Halliday C., Lee O. C., Kong F., Wright L. C., Chen S. C. 2007; In vitro activities of miltefosine and two novel antifungal biscationic salts against a panel of 77 dermatophytes. Antimicrob Agents Chemother 51:2219–2222 [View Article][PubMed]
    [Google Scholar]
  50. Vila T. V. M., Ishida K., de Souza W., Prousis K., Calogeropoulou T., Rozental S. 2013; Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother 68:113–125 [View Article][PubMed]
    [Google Scholar]
  51. Vila T., Chaturvedi A., Rozental S., Lopez-Ribot J. L. 2015a; Characterization of the in vitro activity of Miltefosine against Candida albicans under planktonic and biofilm growing conditions and in vivo efficacy in the murine model of oral candidiasis. Antimicrob Agents Chemother [View Article] [Epub ahead of print]
    [Google Scholar]
  52. Vila T. V. M., Rozental S., de Sá Guimarães C. M. 2015b; A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci 30:1031–1039 [View Article][PubMed]
    [Google Scholar]
  53. Widmer F., Wright L. C., Obando D., Handke R., Ganendren R., Ellis D. H., Sorrell T. C. 2006; Hexadecylphosphocholine (miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob Agents Chemother 50:414–421 [View Article][PubMed]
    [Google Scholar]
  54. Zuo X., Djordjevic J. T., Bijosono Oei J., Desmarini D., Schibeci S. D., Jolliffe K. A., Sorrell T. C. 2011; Miltefosine induces apoptosis-like cell death in yeast via Cox9p in cytochrome c oxidase. Mol Pharmacol 80:476–485 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000175
Loading
/content/journal/jmm/10.1099/jmm.0.000175
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error