1887

Abstract

In the present study, the adjuvant activity of flagellin was compared, in the conjugated and mixed forms, against a peptide vaccine from human immunodeficiency virus type 1 (HIV-1) p24–Nef vaccine candidate. Mice were immunized with the HIV-1 p24–Nef peptide with flagellin in both conjugated and mixed forms. Lymphocyte proliferation, CTL activity, and IL-4 and IFN-γ cytokines were evaluated by bromodeoxyuridine, carboxyfluorescein succinimidyl ester and ELISA methods, respectively. At the same time, the frequency of IFN-γ-producing T-lymphocytes, as well as total and isotype-specific antibodies, were assessed by ELISPOT and indirect ELISA, respectively. Our experimental results showed that the immunized mice with the HIV-1 p24–Nef conjugated or mixed forms of flagellin led to increases in the proliferative responses and Th1 cytokine pattern. The conjugated form of vaccine led to increased CTL activity and a Th1 cytokine pattern of immune responses, as well as an IgM isotype of humoral responses in comparison with the mixed form. The flagellin-conjugated vaccine seems to be more potent in increasing vaccine immunogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000174
2015-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1361.html?itemId=/content/journal/jmm/10.1099/jmm.0.000174&mimeType=html&fmt=ahah

References

  1. Arimilli S. , Johnson J. B. , Clark K. M. , Graff A. H. , Alexander-Miller M. A. , Mizel S. B. , Parks G. D. . ( 2008;). Engineered expression of the TLR5 ligand flagellin enhances paramyxovirus activation of human dendritic cell function. J Virol 82: 10975–10985 [CrossRef] [PubMed].
    [Google Scholar]
  2. Asadi Karam M. R. , Oloomi M. , Mahdavi M. , Habibi M. , Bouzari S. . ( 2013;). Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 31: 1210–1216 [CrossRef] [PubMed].
    [Google Scholar]
  3. Azmi F. , Ahmad Fuaad A. A. , Skwarczynski M. , Toth I. . ( 2013;). Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10: 778–796 [PubMed].[CrossRef]
    [Google Scholar]
  4. Bargieri D. Y. , Leite J. A. , Lopes S. C. , Sbrogio-Almeida M. E. , Braga C. J. , Ferreira L. C. , Soares I. S. , Costa F. T. , Rodrigues M. M. . ( 2010;). Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium . Vaccine 28: 2818–2826 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bates J. T. , Graff A. H. , Phipps J. P. , Grayson J. M. , Mizel S. B. . ( 2011;). Enhanced antigen processing of flagellin fusion proteins promotes the antigen-specific CD8+T cell response independently of TLR5 and MyD88. J Immunol 186: 6255–6262 [CrossRef] [PubMed].
    [Google Scholar]
  6. Braga C. J. , Massis L. M. , Alencar B. C. , Rodrigues M. M. , Sbrogio-Almeida M. E. , Ferreira L. C. . ( 2008;). Cytotoxic T cell adjuvant effects of three Salmonella enterica flagellins. Braz J Microbiol 39: 44–49 [CrossRef] [PubMed].
    [Google Scholar]
  7. Calarota S. A. , Dai A. , Trocio J. N. , Weiner D. B. , Lori F. , Lisziewicz J. . ( 2008;). IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine. Vaccine 26: 5188–5195 [CrossRef] [PubMed].
    [Google Scholar]
  8. Caron G. , Duluc D. , Frémaux I. , Jeannin P. , David C. , Gascan H. , Delneste Y. . ( 2005;). Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-(production by memory CD4+T cells. J Immunol 175: 1551–1557 [CrossRef] [PubMed].
    [Google Scholar]
  9. Eom J. S. , Seok Kim J. , Im Jang J. , Kim B. H. , Young Yoo S. , Hyeon Choi J. , Bang I. S. , Lee I. S. , Keun Park Y. . ( 2013;). Enhancement of host immune responses by oral vaccination to Salmonella enterica serovar Typhimurium harboring both FliC and FljB flagella. PLoS One 8: e74850 [CrossRef] [PubMed].
    [Google Scholar]
  10. Faezi S. , Safarloo M. , Amirmozafari N. , Nikokar I. , Siadat S. D. , Holder I. A. , Mahdavi M. . ( 2014;). Protective efficacy of Pseudomonas aeruginosa type-A flagellin in the murine burn wound model of infection. APMIS 122: 115–127 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fakharzadeh S. , Kalanaky S. , Hafizi M. , Goya M. M. , Masoumi Z. , Namaki S. , Shakeri N. , Abbasi M. , Mahdavi M. , Nazaran M. H. . ( 2013;). The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine 31: 2591–2597 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gauthier M. A. , Klok H. A. . ( 2008;). Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chem Commun (Camb) 23: 2591–2611 [CrossRef] [PubMed].
    [Google Scholar]
  13. Girard A. , Roques E. , Massie B. , Archambault D. . ( 2014;). Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non-disseminating adenovectors through the intrarectal route. Mol Biotechnol 56: 394–407 [CrossRef] [PubMed].
    [Google Scholar]
  14. Honko A. N. , Sriranganathan N. , Lees C. J. , Mizel S. B. . ( 2006;). Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis . Infect Immun 74: 1113–1120 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hou B. , Reizis B. , DeFranco A. L. . ( 2008;). Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 29: 272–282 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kaisho T. , Akira S. . ( 2002;). Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  17. Karam M. R. , Oloomi M. , Mahdavi M. , Habibi M. , Bouzari S. . ( 2013;). Assessment of immune responses of the flagellin (FliC) fused to FimH adhesin of uropathogenic Escherichia coli . Mol Immunol 54: 32–39 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lateef S. S. , Gupta S. , Jayathilaka L. P. , Krishnanchettiar S. , Huang J. S. , Lee B. S. . ( 2007;). An improved protocol for coupling synthetic peptides to carrier proteins for antibody production using DMF to solubilize peptides. J Biomol Tech 18: 173–176 [PubMed].
    [Google Scholar]
  19. Lee S. E. , Kim S. Y. , Jeong B. C. , Kim Y. R. , Bae S. J. , Ahn O. S. , Lee J. J. , Song H. C. , Kim J. M. , other authors . ( 2006;). A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun 74: 694–702 [CrossRef] [PubMed].
    [Google Scholar]
  20. Li W. , Li S. , Hu Y. , Tang B. , Cui L. , He W. . ( 2008;). Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting. Vaccine 26: 3282–3290 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mahdavi M. , Ebtekar M. , Mahboudi F. , Khorram Khorshid H. , Rahbarizadeh F. , Azadmanesh K. , Darabi H. , Pourasgari F. , Hassan Z. M. . ( 2009;). Immunogenicity of a new HIV-1 DNA construct in a BALB/c mouse model. Iran J Immunol 6: 163–173 [PubMed].
    [Google Scholar]
  22. Mahdavi M. , Ebtekar M. , Azadmanesh K. , Khorramkhorshid H. R. , Rahbarizadeh F. , Yazdi M. H. , Zabihollahi R. , Abolhassani M. , Hassan Z. M. . ( 2010;). HIV-1 Gag p24-Nef fusion peptide induces cellular and humoral immune response in a mouse model. Acta Virol 54: 131–136 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mahdavi M. , Ebtekar M. , Khorram Khorshid H. R. , Azadmanesh K. , Hartoonian C. , Hassan Z. M. . ( 2011;). ELISPOT analysis of a new CTL based DNA vaccine for HIV-1 using GM-CSF in DNA prime/peptide boost strategy: GM-CSF induced long-lived memory responses. Immunol Lett 140: 14–20 [CrossRef] [PubMed]
    [Google Scholar]
  24. Mizel S. B. , Bates J. T. . ( 2010;). Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 185: 5677–5682 [CrossRef] [PubMed].
    [Google Scholar]
  25. Nakagawa Y. , Watari E. , Shimizu M. , Takahashi H. . ( 2011;). One-step simple assay to determine antigen-specific cytotoxic activities by single-color flow cytometry. Biomed Res 32: 159–166 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nguyen C. T. , Hong S. H. , Sin J. I. , Vu H. V. , Jeong K. , Cho K. O. , Uematsu S. , Akira S. , Lee S. E. , Rhee J. H. . ( 2013a;). Flagellin enhances tumor-specific CD8+T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine 31: 3879–3887 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nguyen C. T. , Hong S. H. , Ung T. T. , Verma V. , Kim S. Y. , Rhee J. H. , Lee S. E. . ( 2013b;). Intranasal immunization with a flagellin-adjuvanted peptide anticancer vaccine prevents tumor development by enhancing specific cytotoxic T lymphocyte response in a mouse model. Clin Exp Vaccine Res 2: 128–134 [CrossRef] [PubMed].
    [Google Scholar]
  28. Parker R. . ( 2002;). The global HIV/AIDS pandemic, structural inequalities, and the politics of international health. Am J Public Health 92: 343–347 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pérez O. , Romeu B. , Cabrera O. , González E. , Batista-Duharte A. , Labrada A. , Pérez R. , Reyes L. M. , Ramírez W. , other authors . ( 2013;). Adjuvants are key factors for the development of future vaccines: lessons from the Finlay adjuvant platform. Front Immunol 4: 407 [CrossRef] [PubMed].
    [Google Scholar]
  30. Qian F. , Guo A. , Li M. , Liu W. , Pan Z. , Jiang L. , Wu X. , Xu H. . ( 2015;). Salmonella flagellin is a potent carrier-adjuvant for peptide conjugate to induce peptide-specific antibody response in mice. Vaccine 33: 2038–2044 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ramon G. . ( 1924;). Sur la toxine et sur l'anatoxine diphtheriques. Ann Inst Pasteur 38: 1–10.
    [Google Scholar]
  32. Schmid M. A. , Takizawa H. , Baumjohann D. R. , Saito Y. , Manz M. G. . ( 2011;). Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118: 4829–4840 [CrossRef] [PubMed].
    [Google Scholar]
  33. Thibault S. , Imbeault M. , Tardif M. R. , Tremblay M. J. . ( 2009;). TLR5 stimulation is sufficient to trigger reactivation of latent HIV-1 provirus in T lymphoid cells and activate virus gene expression in central memory CD4+T cells. Virology 389: 20–25 [CrossRef] [PubMed].
    [Google Scholar]
  34. Toyota-Hanatani Y. , Inoue M. , Ekawa T. , Ohta H. , Igimi S. , Baba E. . ( 2008;). Importance of the major Fli C antigenic site of Salmonella enteritidis as a subunit vaccine antigen. Vaccine 26: 4135–4137 [CrossRef] [PubMed].
    [Google Scholar]
  35. Vicente-Suarez I. , Brayer J. , Villagra A. , Cheng F. , Sotomayor E. M. . ( 2009;). TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses. Immunol Lett 125: 114–118 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yin G. , Qin M. , Liu X. , Suo J. , Tang X. , Tao G. , Han Q. , Suo X. , Wu W. . ( 2013;). An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Biochem Biophys Res Commun 440: 437–442 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000174
Loading
/content/journal/jmm/10.1099/jmm.0.000174
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error