1887

Abstract

Identification of bacteria causing lower-airway infections is important to determine appropriate antimicrobial therapy. Flexible bronchoscopy with bronchoalveolar lavage (BAL) is used to obtain lower-airway specimens in young children. The first lavage (lavage-1) is typically used for bacterial culture. However, no studies in children have compared the detection of cultivable bacteria from sequential lavages of the same lobe. BAL fluid was collected from two sequential lavages of the same lobe in 79 children enrolled in our prospective studies of chronic cough. The respiratory bacteria , , , and were isolated and identified using standard published methods. was differentiated from using PCR assays. Lower-airway infection was defined as ≥ 10 c.f.u. ml BAL fluid. We compared cultivable bacteria from lavage-1 with those from the second lavage (lavage-2) using the κ statistic. Lower-airway infections by any pathogen were detected in 46 % of first lavages and 39 % of second lavages. Detection was similar in both lavages for all pathogens; the κ statistic was 0.7–0.8 for all bacteria except Of all infections detected in either lavage, 90 % were detected in lavage-1 and 78 % in lavage-2. However, culture of lavage-2 identified infections that would have been missed in 8 % of children, including infections by additional serotypes. Our findings support the continued use of lavage-1 for bacterial culture; however, culture of lavage-2 may yield additional identifications of bacterial pathogens in lower-airway infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000173
2015-11-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1353.html?itemId=/content/journal/jmm/10.1099/jmm.0.000173&mimeType=html&fmt=ahah

References

  1. Angrill J., Agustí C., de Celis R., Rañó A., Gonzalez J., Solé T., Xaubet A., Rodriguez-Roisin R., Torres A. 2002; Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax 57:15–19 [View Article][PubMed]
    [Google Scholar]
  2. Armstrong D. S., Grimwood K., Carlin J. B., Carzino R., Olinsky A., Phelan P. D. 1996; Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 21:267–275 [View Article][PubMed]
    [Google Scholar]
  3. Bassis C. M., Erb-Downward J. R., Dickson R. P., Freeman C. M., Schmidt T. M., Young V. B., Beck J. M., Curtis J. L., Huffnagle G. B. 2015; Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6:e00037 [View Article][PubMed]
    [Google Scholar]
  4. Binks M. J., Temple B., Kirkham L. A., Wiertsema S. P., Dunne E. M., Richmond P. C., Marsh R. L., Leach A. J., Smith-Vaughan H. C. 2012; Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays. PLoS One 7:e34083 [View Article][PubMed]
    [Google Scholar]
  5. Cardines R., Giufrè M., Pompilio A., Fiscarelli E., Ricciotti G., Di Bonaventura G., Cerquetti M. 2012; Haemophilus influenzae in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int J Med Microbiol 302:45–52 [View Article][PubMed]
    [Google Scholar]
  6. Chang A. B., Faoagali J., Cox N. C., Marchant J. M., Dean B., Petsky H. L., Masters I. B. 2006; A bronchoscopic scoring system for airway secretions – airway cellularity and microbiological validation. Pediatr Pulmonol 41:887–892 [View Article][PubMed]
    [Google Scholar]
  7. Chang A. B., Redding G. J., Everard M. L. 2008; Chronic wet cough: protracted bronchitis, chronic suppurative lung disease and bronchiectasis. Pediatr Pulmonol 43:519–531 [View Article][PubMed]
    [Google Scholar]
  8. Charlson E. S., Bittinger K., Haas A. R., Fitzgerald A. S., Frank I., Yadav A., Bushman F. D., Collman R. G. 2011; Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963 [View Article][PubMed]
    [Google Scholar]
  9. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  10. de Blic J., Midulla F., Barbato A., Clement A., Dab I., Eber E., Green C., Grigg J., Kotecha S., other authors. 2000; Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. Eur Respir J 15:217–231[PubMed] [CrossRef]
    [Google Scholar]
  11. De Schutter I., De Wachter E., Crokaert F., Verhaegen J., Soetens O., Piérard D., Malfroot A. 2011; Microbiology of bronchoalveolar lavage fluid in children with acute nonresponding or recurrent community-acquired pneumonia: identification of nontypeable Haemophilus influenzae as a major pathogen. Clin Infect Dis 52:1437–1444 [View Article][PubMed]
    [Google Scholar]
  12. Eastham K. M., Fall A. J., Mitchell L., Spencer D. A. 2004; The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax 59:324–327 [View Article][PubMed]
    [Google Scholar]
  13. Gilchrist F. J., Salamat S., Clayton S., Peach J., Alexander J., Lenney W. 2011; Bronchoalveolar lavage in children with cystic fibrosis: how many lobes should be sampled?. Arch Dis Child 96:215–217 [View Article][PubMed]
    [Google Scholar]
  14. Gutierrez J. P., Grimwood K., Armstrong D. S., Carlin J. B., Carzino R., Olinsky A., Robertson C. F., Phelan P. D. 2001; Interlobar differences in bronchoalveolar lavage fluid from children with cystic fibrosis. Eur Respir J 17:281–286 [View Article][PubMed]
    [Google Scholar]
  15. Hall-Stoodley L., Hu F. Z., Gieseke A., Nistico L., Nguyen D., Hayes J., Forbes M., Greenberg D. P., Dice B., other authors. 2006; Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211 [View Article][PubMed]
    [Google Scholar]
  16. Hare K. M., Grimwood K., Leach A. J., Smith-Vaughan H., Torzillo P. J., Morris P. S., Chang A. B. 2010; Respiratory bacterial pathogens in the nasopharynx and lower airways of Australian indigenous children with bronchiectasis. J Pediatr 157:1001–1005 [View Article][PubMed]
    [Google Scholar]
  17. Hare K. M., Binks M. J., Grimwood K., Chang A. B., Leach A. J., Smith-Vaughan H. 2012a; Culture and PCR detection of Haemophilus influenzae and Haemophilus haemolyticus in Australian Indigenous children with bronchiectasis. J Clin Microbiol 50:2444–2445 [View Article][PubMed]
    [Google Scholar]
  18. Hare K. M., Leach A. J., Morris P. S., Smith-Vaughan H., Torzillo P., Bauert P., Cheng A. C., McDonald M. I., Brown N., other authors. 2012b; Impact of recent antibiotics on nasopharyngeal carriage and lower airway infection in Indigenous Australian children with non-cystic fibrosis bronchiectasis. Int J Antimicrob Agents 40:365–369 [View Article][PubMed]
    [Google Scholar]
  19. Hare K. M., Marsh R. L., Binks M. J., Grimwood K., Pizzutto S. J., Leach A. J., Chang A. B., Smith-Vaughan H. C. 2013; Quantitative PCR confirms culture as the gold standard for detection of lower airway infection by nontypeable Haemophilus influenzae in Australian Indigenous children with bronchiectasis. J Microbiol Methods 92:270–272 [View Article][PubMed]
    [Google Scholar]
  20. Leroy M., Cabral H., Figueira M., Bouchet V., Huot H., Ram S., Pelton S. I., Goldstein R. 2007; Multiple consecutive lavage samplings reveal greater burden of disease and provide direct access to the nontypeable Haemophilus influenzae biofilm in experimental otitis media. Infect Immun 75:4158–4172 [View Article][PubMed]
    [Google Scholar]
  21. Loens K., Van Heirstraeten L., Malhotra-Kumar S., Goossens H., Ieven M. 2009; Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections. J Clin Microbiol 47:21–31 [View Article][PubMed]
    [Google Scholar]
  22. Lutz L., Pereira D. C., Paiva R. M., Zavascki A. P., Barth A. L. 2012; Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196 [View Article][PubMed]
    [Google Scholar]
  23. Marsh R. L., Thornton R. B., Smith-Vaughan H. C., Richmond P., Pizzutto S. J., Chang A. B. 2015; Detection of biofilm in bronchoalveolar lavage from children with non-cystic fibrosis bronchiectasis. Pediatr Pulmonol 50:284–292 [View Article][PubMed]
    [Google Scholar]
  24. Molina A., Del Campo R., Máiz L., Morosini M. I., Lamas A., Baquero F., Cantón R. 2008; High prevalence in cystic fibrosis patients of multiresistant hospital-acquired methicillin-resistant Staphylococcus aureus ST228-SCCmecI capable of biofilm formation. J Antimicrob Chemother 62:961–967 [View Article][PubMed]
    [Google Scholar]
  25. Murray T. S., Egan M., Kazmierczak B. I. 2007; Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19:83–88 [View Article][PubMed]
    [Google Scholar]
  26. Narang R., Bakewell K., Peach J., Clayton S., Samuels M., Alexander J., Lenney W., Gilchrist F. J. 2014; Bacterial distribution in the lungs of children with protracted bacterial bronchitis. PLoS One 9:e108523 [View Article][PubMed]
    [Google Scholar]
  27. O'Grady K. F., Carlin J. B., Chang A. B., Torzillo P. J., Nolan T. M., Ruben A., Andrews R. M. 2010; Effectiveness of 7-valent pneumococcal conjugate vaccine against radiologically diagnosed pneumonia in indigenous infants in Australia. Bull World Health Organ 88:139–146 [View Article][PubMed]
    [Google Scholar]
  28. Pizzutto S. J., Yerkovich S. T., Upham J. W., Hales B. J., Thomas W. R., Chang A. B. 2014; Children with chronic suppurative lung disease have a reduced capacity to synthesize interferon-gamma in vitro in response to non-typeable Haemophilus influenzae . PLoS One 9:e104236 [View Article][PubMed]
    [Google Scholar]
  29. Price E. P., Sarovich D. S., Nosworthy E., Beissbarth J., Marsh R. L., Pickering J., Kirkham L. A., Keil A. D., Chang A. B., Smith-Vaughan H. C. 2015; Haemophilus influenzae: using comparative genomics to accurately identify a highly recombinogenic human pathogen. BMC Genomics 16:641 [View Article][PubMed]
    [Google Scholar]
  30. Rasmussen T. R., Korsgaard J., Møller J. K., Sommer T., Kilian M. 2001; Quantitative culture of bronchoalveolar lavage fluid in community-acquired lower respiratory tract infections. Respir Med 95:885–890 [View Article][PubMed]
    [Google Scholar]
  31. Starner T. D., Zhang N., Kim G., Apicella M. A., McCray P. B. Jr 2006; Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med 174:213–220 [View Article][PubMed]
    [Google Scholar]
  32. Valery P. C., Torzillo P. J., Mulholland K., Boyce N. C., Purdie D. M., Chang A. B. 2004; Hospital-based case-control study of bronchiectasis in indigenous children in Central Australia. Pediatr Infect Dis J 23:902–908 [View Article][PubMed]
    [Google Scholar]
  33. Van Vyve T., Chanez P., Lacoste J. Y., Bousquet J., Michel F. B., Godard P. 1992; Comparison between bronchial and alveolar samples of bronchoalveolar lavage fluid in asthma. Chest 102:356–361 [View Article][PubMed]
    [Google Scholar]
  34. Wong J. K., Ranganathan S. C., Hart E. Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) 2013; Staphylococcus aureus in early cystic fibrosis lung disease. Pediatr Pulmonol 48:1151–1159 [View Article][PubMed]
    [Google Scholar]
  35. Wurzel D. F., Marchant J. M., Yerkovich S. T., Upham J. W., Mackay I. M., Masters I. B., Chang A. B. 2014; Prospective characterization of protracted bacterial bronchitis in children. Chest 145:1271–1278 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.000173
Loading
/content/journal/jmm/10.1099/jmm.0.000173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error