1887

Abstract

The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2 %)], and higher rates of resistance to tetracycline (∼34 %) and sulfamethoxazole/trimethoprim (∼45 %). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4 %) and erythromycin (51.6 %)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the (efflux pump) or (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit – a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000172
2015-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1375.html?itemId=/content/journal/jmm/10.1099/jmm.0.000172&mimeType=html&fmt=ahah

References

  1. Alcaide F. , Liñares J. , Pallares R. , Carratala J. , Benitez M. A. , Gudiol F. , Martin R. . ( 1995;). In vitro activities of 22 beta-lactam antibiotics against penicillin-resistant and penicillin-susceptible viridans group streptococci isolated from blood. Antimicrob Agents Chemother 39: 2243–2247 [CrossRef] [PubMed].
    [Google Scholar]
  2. Amezaga M. R. , Carter P. E. , Cash P. , McKenzie H. . ( 2002;). Molecular epidemiology of erythromycin resistance in Streptococcus pneumoniae isolates from blood and noninvasive sites. J Clin Microbiol 40: 3313–3318 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bergmann R. , van der Linden M. , Chhatwal G. S. , Nitsche-Schmitz D. P. . ( 2014;). Factors that cause trimethoprim resistance in Streptococcus pyogenes . Antimicrob Agents Chemother 58: 2281–2288 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bowen A. C. , Lilliebridge R. A. , Tong S. Y. , Baird R. W. , Ward P. , McDonald M. I. , Currie B. J. , Carapetis J. R. . ( 2012;). Is Streptococcus pyogenes resistant or susceptible to trimethoprim-sulfamethoxazole?. J Clin Microbiol 50: 4067–4072 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chalkley L. , Schuster C. , Potgieter E. , Hakenbeck R. . ( 1991;). Relatedness between Streptococcus pneumoniae and viridans streptococci: transfer of penicillin resistance determinants and immunological similarities of penicillin-binding proteins. FEMS Microbiol Lett 90: 35–42 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chen J. , Liu L. , Wang G. , Chen Y. , Luo Z. , Huang Y. , Fu Z. , Yang Y. , Liu E. . ( 2009;). Correlation between usage of macrolide antibiotic and resistance of Streptococcus pneumoniae clinic isolates from Chongqing children's hospital. Pediatr Pulmonol 44: 917–921 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chi F. , Nolte O. , Bergmann C. , Ip M. , Hakenbeck R. . ( 2007;). Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae, S. mitis and S. oralis . Int J Med Microbiol 297: 503–512 [CrossRef] [PubMed].
    [Google Scholar]
  8. CLSI ( 2009a;). Performance Standards for Antimicrobial Disk Susceptibility Tests Approved Standard, 10th edn, Document M02-A10 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. CLSI ( 2009b;). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement M100-S19 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  10. Cook L. C. , Federle M. J. . ( 2014;). Peptide pheromone signaling in Streptococcus and Enterococcus . FEMS Microbiol Rev 38: 473–492 [CrossRef] [PubMed].
    [Google Scholar]
  11. de Azavedo J. C. , McGavin M. , Duncan C. , Low D. E. , McGeer A. . ( 2001;). Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. Antimicrob Agents Chemother 45: 3504–3508 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dickson R. P. , Erb-Downward J. R. , Huffnagle G. B. . ( 2013;). The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7: 245–257 [CrossRef] [PubMed].
    [Google Scholar]
  13. Diekema D. J. , Beach M. L. , Pfaller M. A. , Jones R. N. . ( 2001;). Antimicrobial resistance in viridans group streptococci among patients with and without the diagnosis of cancer in the USA, Canada and Latin America. Clin Microbiol Infect 7: 152–157.[CrossRef]
    [Google Scholar]
  14. Diekema D. J. , Andrews J. I. , Huynh H. , Rhomberg P. R. , Doktor S. R. , Beyer J. , Shortridge V. D. , Flamm R. K. , Jones R. N. , Pfaller M. A. . ( 2003;). Molecular epidemiology of macrolide resistance in neonatal bloodstream isolates of group B streptococci. J Clin Microbiol 41: 2659–2661 [CrossRef] [PubMed].
    [Google Scholar]
  15. Doern C. D. , Burnham C. A. . ( 2010;). It's not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 48: 3829–3835 [CrossRef] [PubMed].
    [Google Scholar]
  16. Doern G. V. , Ferraro M. J. , Brueggemann A. B. , Ruoff K. L. . ( 1996;). Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. Antimicrob Agents Chemother 40: 891–894 [PubMed].
    [Google Scholar]
  17. Duan K. , Dammel C. , Stein J. , Rabin H. , Surette M. G. . ( 2003;). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50: 1477–1491 [CrossRef] [PubMed].
    [Google Scholar]
  18. EUCAST (2015). Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0. http://www.eucast.org/clinical_breakpoints/.
    [Google Scholar]
  19. European Centre for Disease Prevention and Control (2012). Antimicrobial Resistance Surveillance in Europe. .http://ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/index.aspx.
    [Google Scholar]
  20. Farrell D. J. , Morrissey I. , Bakker S. , Felmingham D. . ( 2002;). Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999–2000 study. J Antimicrob Chemother 50: (Suppl S2), 39–47 [CrossRef] [PubMed].
    [Google Scholar]
  21. Farrell D. J. , Morrissey I. , Bakker S. , Buckridge S. , Felmingham D. . ( 2004;). In vitro activities of telithromycin, linezolid, and quinupristin–dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob Agents Chemother 48: 3169–3171 [CrossRef] [PubMed].
    [Google Scholar]
  22. Felmingham D. , Cantón R. , Jenkins S. G. . ( 2007;). Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 55: 111–118 [CrossRef] [PubMed].
    [Google Scholar]
  23. Fontaine L. , Wahl A. , Flechard M. , Mignolet J. , Hols P. . ( 2014;). Regulation of competence for natural transformation in streptococci. Infect Genet Evol 33: 343–360.[CrossRef]
    [Google Scholar]
  24. Gilligan P. H. . ( 2014;). Infections in patients with cystic fibrosis: diagnostic microbiology update. Clin Lab Med 34: 197–217 [CrossRef] [PubMed].
    [Google Scholar]
  25. Gómez-Garcés J. L. , Alós J. I. , Cogollos R. . ( 1994;). Bacteriologic characteristics and antimicrobial susceptibility of 70 clinically significant isolates of Streptococcus milleri group. Diagn Microbiol Infect Dis 19: 69–73 [CrossRef] [PubMed].
    [Google Scholar]
  26. Gordon K. A. , Beach M. L. , Biedenbach D. J. , Jones R. N. , Rhomberg P. R. , Mutnick A. H. . ( 2002;). Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis 43: 157–162 [CrossRef] [PubMed].
    [Google Scholar]
  27. Goss C. H. , Muhlebach M. S. . ( 2011;). Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10: 298–306.[CrossRef]
    [Google Scholar]
  28. Grinwis M. E. , Sibley C. D. , Parkins M. D. , Eshaghurshan C. S. , Rabin H. R. , Surette M. G. . ( 2010;). Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients. Antimicrob Agents Chemother 54: 2823–2829 [CrossRef] [PubMed].
    [Google Scholar]
  29. Håvarstein L. S. , Hakenbeck R. , Gaustad P. . ( 1997;). Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179: 6589–6594 [PubMed].
    [Google Scholar]
  30. Honeybourne D. . ( 1994;). Antibiotic penetration into lung tissues. Thorax 49: 104–106 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kastner U. , Guggenbichler J. P. . ( 2001;). Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection 29: 251–256 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kataja J. , Huovinen P. , Muotiala A. , Vuopio-Varkila J. , Efstratiou A. , Hallas G. , Seppälä H. , Finnish Study Group for Antimicrobial Resistance . ( 1998;). Clonal spread of group A streptococcus with the new type of erythromycin resistance. J Infect Dis 177: 786–789 [CrossRef] [PubMed].
    [Google Scholar]
  33. Leclercq R. , Courvalin P. . ( 1991;). Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35: 1267–1272 [CrossRef] [PubMed].
    [Google Scholar]
  34. Limia A. , Jimenez M. L. , Alarcon T. , Lopez-Brea M. . ( 1999;). Five-year analysis of antimicrobial susceptibility of the Streptococcus milleri group. Eur J Clin Microbiol Infect Dis 18: 440–444.[CrossRef]
    [Google Scholar]
  35. LiPuma J. J. . ( 2010;). The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23: 299–323 [CrossRef] [PubMed].
    [Google Scholar]
  36. LiPuma J. . ( 2012;). The new microbiology of cystic fibrosis: it takes a community. Thorax 67: 851–852 [CrossRef] [PubMed].
    [Google Scholar]
  37. Lynch S. V. , Bruce K. D. . ( 2013;). The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med 3: a009738 [CrossRef] [PubMed].
    [Google Scholar]
  38. Maeda Y. , Murayama M. , Goldsmith C. E. , Coulter W. A. , Mason C. , Millar B. C. , Dooley J. S. , Lowery C. J. , Matsuda M. , other authors . ( 2011;). Molecular characterization and phylogenetic analysis of quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC and parE gene loci in viridans group streptococci isolated from adult patients with cystic fibrosis. J Antimicrob Chemother 66: 476–486 [CrossRef] [PubMed].
    [Google Scholar]
  39. Oldenburg M. , Krüger A. , Ferstl R. , Kaufmann A. , Nees G. , Sigmund A. , Bathke B. , Lauterbach H. , Suter M. , other authors . ( 2012;). TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337: 1111–1115 [CrossRef] [PubMed].
    [Google Scholar]
  40. Parkins M. D. , Sibley C. D. , Surette M. G. , Rabin H. R. . ( 2008;). The Streptococcus milleri group – an unrecognized cause of disease in cystic fibrosis: a case series and literature review. Pediatr Pulmonol 43: 490–497 [CrossRef] [PubMed].
    [Google Scholar]
  41. Paulus S. , Dobson S. , Rassekh S. , Blondel-Hill E. . ( 2009;). In vitro inferiority of ceftazidime compared with other beta-lactams for viridans group Streptococcus bacteremia in pediatric oncology patients: implications for antibiotic choices. J Pediatr Hematol Oncol 31: 267–269 [CrossRef] [PubMed].
    [Google Scholar]
  42. Poole P. M. , Wilson G. . ( 1976;). Infection with minute-colony-forming beta-haemolytic streptococci. J Clin Pathol 29: 740–745 [CrossRef] [PubMed].
    [Google Scholar]
  43. [Google Scholar]
  44. Qin X. , Zerr D. M. , McNutt M. A. , Berry J. E. , Burns J. L. , Kapur R. P. . ( 2012;). Pseudomonas aeruginosa syntrophy in chronically colonized airways of cystic fibrosis patients. Antimicrob Agents Chemother 56: 5971–5981 [CrossRef] [PubMed].
    [Google Scholar]
  45. Rabin H. R. , Surette M. G. . ( 2012;). The cystic fibrosis airway microbiome. Curr Opin Pulm Med 18: 622–627 [CrossRef] [PubMed].
    [Google Scholar]
  46. Reinert R. R. , Filimonova O. Y. , Al-Lahham A. , Grudinina S. A. , Ilina E. N. , Weigel L. M. , Sidorenko S. V. . ( 2008;). Mechanisms of macrolide resistance among Streptococcus pneumoniae isolates from Russia. Antimicrob Agents Chemother 52: 2260–2262 [CrossRef] [PubMed].
    [Google Scholar]
  47. Richards R. M. , Hamilton V. E. , Thomas M. R. . ( 1998;). In-vitro investigation of the antibacterial activity of agents which may be used for the oral treatment of lung infections in CF patients. J Antimicrob Chemother 42: 171–178 [CrossRef] [PubMed].
    [Google Scholar]
  48. Rogers G. B. , Stressmann F. A. , Walker A. W. , Carroll M. P. , Bruce K. D. . ( 2010;). Lung infections in cystic fibrosis: deriving clinical insight from microbial complexity. Expert Rev Mol Diagn 10: 187–196 [CrossRef] [PubMed].
    [Google Scholar]
  49. Rogers G. B. , Shaw D. , Marsh R. L. , Carroll M. P. , Serisier D. J. , Bruce K. D. . ( 2015;). Respiratory microbiota: addressing clinical questions, informing clinical practice. Thorax 70: 74–81 [CrossRef] [PubMed].
    [Google Scholar]
  50. Saiman L. , Marshall B. C. , Mayer-Hamblett N. , Burns J. L. , Quittner A. L. , Cibene D. A. , Coquillette S. , Fieberg A. Y. , Accurso F. J. , Campbell P. W., III , Macrolide Study Group . ( 2003;). Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290: 1749–1756 [CrossRef] [PubMed].
    [Google Scholar]
  51. Saiman L. , Anstead M. , Mayer-Hamblett N. , Lands L. C. , Kloster M. , Hocevar-Trnka J. , Goss C. H. , Rose L. M. , Burns J. L. , other authors . ( 2010;). Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303: 1707–1715 [CrossRef] [PubMed].
    [Google Scholar]
  52. Sibley C. D. , Rabin H. , Surette M. G. . ( 2006;). Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol 1: 53–61 [CrossRef] [PubMed].
    [Google Scholar]
  53. Sibley C. D. , Parkins M. D. , Rabin H. R. , Duan K. , Norgaard J. C. , Surette M. G. . ( 2008a;). A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105: 15070–15075 [CrossRef] [PubMed].
    [Google Scholar]
  54. Sibley C. D. , Duan K. , Fischer C. , Parkins M. D. , Storey D. G. , Rabin H. R. , Surette M. G. . ( 2008b;). Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4: e1000184 [CrossRef] [PubMed].
    [Google Scholar]
  55. Sibley C. D. , Parkins M. D. , Rabin H. R. , Surette M. G. . ( 2009;). The relevance of the polymicrobial nature of airway infection in the acute and chronic management of patients with cystic fibrosis. Curr Opin Investig Drugs 10: 787–794 [PubMed].
    [Google Scholar]
  56. Sibley C. D. , Grinwis M. E. , Field T. R. , Parkins M. D. , Norgaard J. C. , Gregson D. B. , Rabin H. R. , Surette M. G. . ( 2010;). McKay agar enables routine quantification of the ‘Streptococcus milleri’ group in cystic fibrosis patients. J Med Microbiol 59: 534–540 [CrossRef] [PubMed].
    [Google Scholar]
  57. Smith A. , Jackson M. S. , Kennedy H. . ( 2004;). Antimicrobial susceptibility of viridans group streptococcal blood isolates to eight antimicrobial agents. Scand J Infect Dis 36: 259–263 [CrossRef] [PubMed].
    [Google Scholar]
  58. Soeters H. M. , von Gottberg A. , Cohen C. , Quan V. , Klugman K. P. . ( 2012;). Trimethoprim-sulfamethoxazole prophylaxis and antibiotic nonsusceptibility in invasive pneumococcal disease. Antimicrob Agents Chemother 56: 1602–1605 [CrossRef] [PubMed].
    [Google Scholar]
  59. Stelzmueller I. , Biebl M. , Berger N. , Eller M. , Mendez J. , Fille M. , Angerer K. , Schmid T. , Lorenz I. , other authors . ( 2007;). Relevance of group Milleri streptococci in thoracic surgery: a clinical update. Am Surg 73: 492–497 [PubMed].
    [Google Scholar]
  60. Surette M. G. . ( 2014;). The cystic fibrosis lung microbiome. Ann Am Thorac Soc 11 (Suppl 1:., S61–S65 [CrossRef] [PubMed].
    [Google Scholar]
  61. Tait-Kamradt A. , Davies T. , Appelbaum P. C. , Depardieu F. , Courvalin P. , Petitpas J. , Wondrack L. , Walker A. , Jacobs M. R. , Sutcliffe J. . ( 2000;). Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother 44: 3395–3401 [CrossRef] [PubMed].
    [Google Scholar]
  62. Tazumi A. , Maeda Y. , Goldsmith C. E. , Coulter W. A. , Mason C. , Millar B. C. , McCalmont M. , Rendall J. , Elborn J. S. , other authors . ( 2009;). Molecular characterization of macrolide resistance determinants [erm(B) and mef(A)] in Streptococcus pneumoniae and viridans group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF). J Antimicrob Chemother 64: 501–506 [CrossRef] [PubMed].
    [Google Scholar]
  63. Wierzbowski A. K. , Nichol K. , Laing N. , Hisanaga T. , Nikulin A. , Karlowsky J. A. , Hoban D. J. , Zhanel G. G. . ( 2007;). Macrolide resistance mechanisms among Streptococcus pneumoniae isolated over 6 years of Canadian Respiratory Organism Susceptibility Study (CROSS) (1998–2004). J Antimicrob Chemother 60: 733–740 [CrossRef] [PubMed].
    [Google Scholar]
  64. Wierzbowski A. K. , Karlowsky J. A. , Adam H. J. , Nichol K. A. , Hoban D. J. , Zhanel G. G. , Canadian Antimicrobial Resistance Alliance . ( 2014;). Evolution and molecular characterization of macrolide-resistant Streptococcus pneumoniae in Canada between 1998 and 2008. J Antimicrob Chemother 69: 59–66 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000172
Loading
/content/journal/jmm/10.1099/jmm.0.000172
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error