1887

Abstract

infection (CDI) leads to considerable morbidity and mortality among hospitalized patients. Faecal specimens from 1110 hospitalized patients suspected for CDI were cultured for isolation of and characterization of virulence genes. PCR was carried out for toxigenic genes , , and and PCR-RFLP for and genes. Of 174 (15.7 %) isolates, 121 (69.5 %) were toxigenic, amongst which 68 (56.2 %) also had both and genes. The remaining 53 (43.8 %) of the isolates also had at least one of the toxin genes. Binary toxin genes ( and ) with only one of the two components were present in 16 (9.2 %) of the 174 isolates. The other virulence genes – and – were present in 100 % of the isolates. The most frequent PCR-RFLP type of gene was type I ( = 101), followed by type VII ( = 49) and type III ( = 24). The gene presented with three combinations of patterns. Characterization of virulence genes in isolates is of extreme importance for epidemiological surveillance and control of outbreaks owing to the capacity of this bacterium to adapt to new environmental circumstances, leading to the emergence of new epidemic strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000169
2015-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1297.html?itemId=/content/journal/jmm/10.1099/jmm.0.000169&mimeType=html&fmt=ahah

References

  1. Al-Thani A. A., Hamdi W. S., Al-Ansari N. A., Doiphode S. H.. ( 2014;). Polymerase chain reaction ribotyping of Clostridium difficile isolates in Qatar: a hospital-based study. BMC Infect Dis 14: 502 [CrossRef] [PubMed].
    [Google Scholar]
  2. Alonso R., Martín A., Peláez T., Marín M., Rodríguez-Creixéms M., Bouza E.. ( 2005;). Toxigenic status of Clostridium difficile in a large Spanish teaching hospital. J Med Microbiol 54: 159–162 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barbut F., Lalande V., Burghoffer B., Thien H. V., Grimprel E., Petit J. C.. ( 2002;). Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol 40: 2079–2083 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barbut F., Mastrantonio P., Delmée M., Brazier J., Kuijper E., Poxton I.. ( 2007;). European Study Group on Clostridium difficile (ESGCD) Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 13: 1048–1057 [CrossRef] [PubMed].
    [Google Scholar]
  5. Burckhardt F., Friedrich A., Beier D., Eckmanns T.. ( 2008;). Clostridium difficile surveillance trends, Saxony, Germany. Emerg Infect Dis 14: 691–692 [CrossRef] [PubMed].
    [Google Scholar]
  6. Burke K. E., Lamont J. T.. ( 2014;). Clostridium difficile infection: a worldwide disease. Gut Liver 8: 1–6 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cartman S. T., Heap J. T., Kuehne S. A., Cockayne A., Minton N. P.. ( 2010;). The emergence of ‘hypervirulence’ in Clostridium difficile. Int J Med Microbiol 300: 387–395 [CrossRef] [PubMed].
    [Google Scholar]
  8. Collins D. A., Hawkey P. M., Riley T. V.. ( 2013;). Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control 2: 21 [CrossRef] [PubMed].
    [Google Scholar]
  9. Doosti A., Mokhtari-Farsani A.. ( 2014;). Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of calves in south west of Iran. Ann Clin Microbiol Antimicrob 13: 21 [CrossRef] [PubMed].
    [Google Scholar]
  10. Drudy D., Fanning S., Kyne L.. ( 2007;). Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis 11: 5–10 [CrossRef] [PubMed].
    [Google Scholar]
  11. Eckert C., Emirian A., Le Monnier A., Cathala L., De Montclos H., Goret J., Berger P., Petit A., De Chevigny A., other authors. ( 2015;). Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect 3: 12–17 [CrossRef] [PubMed].
    [Google Scholar]
  12. ECDC (2015) European Centre for Disease Prevention and Control Point Prevalence Survey http://www.ecdc.europa.eu/en/healthtopics/Healthcare-associated_infections/point-prevalence-survey/Pages/Point-prevalence-survey.aspx.
    [Google Scholar]
  13. Geric B., Johnson S., Gerding D. N., Grabnar M., Rupnik M.. ( 2003;). Frequency of binary toxin genes among Clostridium difficile strains that do not produce large clostridial toxins. J Clin Microbiol 41: 5227–5232 [CrossRef] [PubMed].
    [Google Scholar]
  14. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J.. ( 2008;). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47: 1162–1170 [CrossRef] [PubMed].
    [Google Scholar]
  15. Goudarzi M., Goudarzi H., Alebouyeh M., Azimi Rad M., Shayegan Mehr F. S., Zali M. R., Aslani M. M.. ( 2013;). Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J 15: 704–711 [CrossRef] [PubMed].
    [Google Scholar]
  16. Huang H., Weintraub A., Fang H., Nord C. E.. ( 2009;). Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents 34: 516–522 [CrossRef] [PubMed].
    [Google Scholar]
  17. Humphries R. M.. ( 2012;). Laboratory tests for the diagnosis of Clostridium difficile infections. Clin Microbiol Newsl 34: 151–157 [CrossRef]
    [Google Scholar]
  18. Jain A., Pope C., Wilks M., Planche T.. ( 2013;). Identification of Clostridium difficile: evaluation of genotypic, phenotypic and proteomic methods. Br J Biomed Sci 70: 128–129,[PubMed].
    [Google Scholar]
  19. Karjalainen T., Saumier N., Barc M. C., Delmée M., Collignon A.. ( 2002;). Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative to serotyping. J Clin Microbiol 40: 2452–2458 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kato H., Yokoyama T., Arakawa Y.. ( 2005;). Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol 54: 167–171 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim H., Jeong S. H., Roh K. H., Hong S. G., Kim J. W., Shin M.-G., Kim M.-N., Shin H. B., Uh Y., other authors. ( 2010;). Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. Korean J Lab Med 30: 491–497 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lemee L., Dhalluin A., Pestel-Caron M., Lemeland J. F., Pons J. L.. ( 2004;). Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol 42: 2609–2617 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lyerly D. M., Barroso L. A., Wilkins T. D., Depitre C., Corthier G.. ( 1992;). Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect Immun 60: 4633–4639 [PubMed].
    [Google Scholar]
  24. Martin H., Willey B., Low D. E., Staempfli H. R., McGeer A., Boerlin P., Mulvey M., Weese J. S.. ( 2008;). Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. J Clin Microbiol 46: 2999–3004 [CrossRef] [PubMed].
    [Google Scholar]
  25. McDonald L. C., Owings M., Jernigan D. B.. ( 2006;). Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis 12: 409–415 [CrossRef] [PubMed].
    [Google Scholar]
  26. McEllistrem M. C., Carman R. J., Gerding D. N., Genheimer C. W., Zheng L.. ( 2005;). A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis 40: 265–272 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nawar N. N., Haleim M. M. A., Shereif R. H. E., Hussein A. F. A.. ( 2014;). Prevalence of Clostridium difficile among cases of antibiotics associated diarrhea in hospitalized patients in an Egyptian hospital. Global Adv Res J Microbiol 3: 1089–1097.
    [Google Scholar]
  28. Péchiné S., Gleizes A., Janoir C., Gorges-Kergot R., Barc M. C., Delmée M., Collignon A.. ( 2005;). Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54: 193–196 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pituch H., Rupnik M., Obuch-Woszczatyński P., Grubesic A., Meisel-Mikołajczyk F., Luczak M.. ( 2005;). Detection of binary-toxin genes (cdtA and cdtB) among Clostridium difficile strains isolated from patients with C. difficile-associated diarrhoea (CDAD) in Poland. J Med Microbiol 54: 143–147 [CrossRef] [PubMed].
    [Google Scholar]
  30. Quesada-Gómez C., López-Ureña D., Acuña-Amador L., Villalobos-Zúñiga M., Du T., Freire R., Guzmán-Verri C., del Mar Gamboa-Coronado M., Lawley T. D., other authors. ( 2015;). Emergence of an outbreak-associated Clostridium difficile variant with increased virulence. J Clin Microbiol 53: 1216–1226 [CrossRef] [PubMed].
    [Google Scholar]
  31. Rupnik M., Grabnar M., Geric B.. ( 2003;). Binary toxin producing Clostridium difficile strains. Anaerobe 9: 289–294 [CrossRef] [PubMed].
    [Google Scholar]
  32. Ryan A., Lynch M., Smith S. M., Amu S., Nel H. J., McCoy C. E., Dowling J. K., Draper E., O'Reilly V., other authors. ( 2011;). A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog 7: e1002076 [CrossRef] [PubMed].
    [Google Scholar]
  33. Schwan C., Stecher B., Tzivelekidis T., van Ham M., Rohde M., Hardt W. D., Wehland J., Aktories K.. ( 2009;). Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5: e1000626 [CrossRef] [PubMed].
    [Google Scholar]
  34. Singh M., Vaishnavi C., Mahmood S., Kochhar R.. ( 2015;). Surveillance for antibiotic resistance in Clostridium difficile strains isolated from patients in a tertiary care center. Adv Microbiol 5: 336–345 [CrossRef]
    [Google Scholar]
  35. Spigaglia P., Mastrantonio P.. ( 2002;). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40: 3470–3475 [CrossRef] [PubMed].
    [Google Scholar]
  36. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I.. ( 1999;). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37: 461–463 [PubMed].
    [Google Scholar]
  37. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M.. ( 2000;). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186: 307–312 [CrossRef] [PubMed].
    [Google Scholar]
  38. Tasteyre A., Karjalainen T., Avesani V., Delmée M., Collignon A., Bourlioux P., Barc M. C.. ( 2000;). Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 38: 3179–3186 [PubMed].
    [Google Scholar]
  39. Tasteyre A., Barc M. C., Collignon A., Boureau H., Karjalainen T.. ( 2001;). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69: 7937–7940 [CrossRef] [PubMed].
    [Google Scholar]
  40. Vaishnavi C.. ( 2010;). Diagnostic approach to Clostridium difficile infection. Indian J Gastroenterol 29: 137–139 [CrossRef] [PubMed].
    [Google Scholar]
  41. Vaishnavi C., Singh M., Kapoor P., Kochhar R.. ( 2015;). Clinical and demographic profile of patients reporting for Clostridium difficile infection in a tertiary care hospital. Indian J Med Microbiol 33: 326–327 [CrossRef] [PubMed].
    [Google Scholar]
  42. Voth D. E., Ballard J. D.. ( 2005;). Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18: 247–263 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wren B. W., Heard S. R., al-Saleh A. I., Tabaqchali S.. ( 1993;). Characterisation of Clostridium difficile strains by polymerase chain reaction with toxin A- and B-specific primers. J Med Microbiol 38: 109–113 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000169
Loading
/content/journal/jmm/10.1099/jmm.0.000169
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error