1887

Abstract

is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20 % of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S ( = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how senses and responds to oxygen and how this varies between invasive and non-invasive strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000160
2015-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1287.html?itemId=/content/journal/jmm/10.1099/jmm.0.000160&mimeType=html&fmt=ahah

References

  1. Bécavin C., Bouchier C., Lechat P., Archambaud C., Creno S., Gouin E., Wu Z., Kühbacher A., Brisse S., other authors. ( 2014;). Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio 5: e00969–e001014 [CrossRef] [PubMed].
    [Google Scholar]
  2. Begley M., Gahan C. G., Hill C.. ( 2002;). Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68: 6005–6012 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bernstein C., Bernstein H., Payne C. M., Beard S. E., Schneider J.. ( 1999;). Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39: 68–72 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bo Andersen J., Roldgaard B. B., Christensen B. B., Licht T. R.. ( 2007;). Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs. BMC Microbiol 7: 55 [CrossRef] [PubMed].
    [Google Scholar]
  5. Coleman R., Iqbal S., Godfrey P. P., Billington D.. ( 1979;). Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J 178: 201–208 [CrossRef] [PubMed].
    [Google Scholar]
  6. De Smet I., Van Hoorde L., Vande Woestyne M., Christiaens H., Verstraete W.. ( 1995;). Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79: 292–301 [CrossRef] [PubMed].
    [Google Scholar]
  7. den Bakker H. C., Cummings C. A., Ferreira V., Vatta P., Orsi R. H., Degoricija L., Barker M., Petrauskene O., Furtado M. R., Wiedmann M.. ( 2010;). Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11: 688 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dowd G. C., Joyce S. A., Hill C., Gahan C. G.. ( 2011;). Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect Immun 79: 369–379 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P.. ( 2002;). European Listeria Genome Consortium Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45: 1095–1106 [CrossRef] [PubMed].
    [Google Scholar]
  10. Erdenlig S., Ainsworth A. J., Austin F. W.. ( 2000;). Pathogenicity and production of virulence factors by Listeria monocytogenes isolates from channel catfish. J Food Prot 63: 613–619 [PubMed].
    [Google Scholar]
  11. Farber J. M., Peterkin P. I.. ( 1991;). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476–511 [PubMed].
    [Google Scholar]
  12. Gahan C. G., Hill C.. ( 2014;). Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 4: 9 [CrossRef] [PubMed].
    [Google Scholar]
  13. He G., Shankar R. A., Chzhan M., Samouilov A., Kuppusamy P., Zweier J. L.. ( 1999;). Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci U S A 96: 4586–4591 [CrossRef] [PubMed].
    [Google Scholar]
  14. Jenkins G. J., D'Souza F. R., Suzen S. H., Eltahir Z. S., James S. A., Parry J. M., Griffiths P. A., Baxter J. N.. ( 2007;). Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett's oesophagus. Carcinogenesis 28: 136–142 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kathariou S., Pine L.. ( 1991;). The type strain(s) of Listeria monocytogenes: a source of continuing difficulties. Int J Syst Bacteriol 41: 328–330 [CrossRef] [PubMed].
    [Google Scholar]
  16. King T., Ferenci T., Szabo E. A.. ( 2003;). The effect of growth atmosphere on the ability of Listeria monocytogenes to survive exposure to acid, proteolytic enzymes and bile salts. Int J Food Microbiol 84: 133–143 [CrossRef] [PubMed].
    [Google Scholar]
  17. Koutsoumanis K. P., Kendall P. A., Sofos J. N.. ( 2003;). Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol 69: 7514–7516 [CrossRef] [PubMed].
    [Google Scholar]
  18. Laksanalamai P., Joseph L. A., Silk B. J., Burall L. S., Tarr C. L., Gerner-Smidt P., Datta A. R.. ( 2012;). Genomic characterization of Listeria monocytogenes strains involved in a multistate listeriosis outbreak associated with cantaloupe in US. PLoS One 7: e42448 [CrossRef] [PubMed].
    [Google Scholar]
  19. Linnan M. J., Mascola L., Lou X. D., Goulet V., May S., Salminen C., Hird D. W., Yonekura M. L., Hayes P., other authors. ( 1988;). Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 319: 823–828 [CrossRef] [PubMed].
    [Google Scholar]
  20. Liu D., Ainsworth A. J., Austin F. W., Lawrence M. L.. ( 2003;). Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol 52: 1065–1070 [CrossRef] [PubMed].
    [Google Scholar]
  21. Liu D., Lawrence M. L., Ainsworth A. J., Austin F. W.. ( 2005;). Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains. FEMS Microbiol Lett 243: 373–378 [CrossRef] [PubMed].
    [Google Scholar]
  22. Melo J., Schrama D., Andrew P. W., Faleiro M. L.. ( 2013;). Proteomic analysis shows that individual Listeria monocytogenes strains use different strategies in response to gastric stress. Foodborne Pathog Dis 10: 107–119 [CrossRef] [PubMed].
    [Google Scholar]
  23. Merritt M. E., Donaldson J. R.. ( 2009;). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58: 1533–1541 [CrossRef] [PubMed].
    [Google Scholar]
  24. Merritt M. E., Lawrence A. M., Donaldson J. R.. ( 2010;). Comparative study of the effect of bile on the Listeria monocytogenes virulent strain EGD-e and avirulent strain HCC23. Arch Clin Microbiol 1: 4–9.
    [Google Scholar]
  25. Metselaar K. I., den Besten H. M., Abee T., Moezelaar R., Zwietering M. H.. ( 2013;). Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. Int J Food Microbiol 166: 508–514 [CrossRef] [PubMed].
    [Google Scholar]
  26. Monte M. J., Marin J. J., Antelo A., Vazquez-Tato J.. ( 2009;). Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15: 804–816 [CrossRef] [PubMed].
    [Google Scholar]
  27. Olesen I., Vogensen F. K., Jespersen L.. ( 2009;). Gene transcription and virulence potential of Listeria monocytogenes strains after exposure to acidic and NaCl stress. Foodborne Pathog Dis 6: 669–680 [CrossRef] [PubMed].
    [Google Scholar]
  28. Olier M., Rousseaux S., Piveteau P., Lemaître J. P., Rousset A., Guzzo J.. ( 2004;). Screening of glutamate decarboxylase activity and bile salt resistance of human asymptomatic carriage, clinical, food, and environmental isolates of Listeria monocytogenes. Int J Food Microbiol 93: 87–99 [CrossRef] [PubMed].
    [Google Scholar]
  29. Orsi R. H., den Bakker H. C., Wiedmann M.. ( 2011;). Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79–96 [CrossRef] [PubMed].
    [Google Scholar]
  30. Payne A., Schmidt T. B., Nanduri B., Pendarvis K., Pittman J. R., Thornton J. A., Grissett J., Donaldson J. R.. ( 2013;). Proteomic analysis of the response of Listeria monocytogenes to bile salts under anaerobic conditions. J Med Microbiol 62: 25–35 [CrossRef] [PubMed].
    [Google Scholar]
  31. Prieto A. I., Ramos-Morales F., Casadesús J.. ( 2004;). Bile-induced DNA damage in Salmonella enterica. Genetics 168: 1787–1794 [CrossRef] [PubMed].
    [Google Scholar]
  32. Prieto A. I., Ramos-Morales F., Casadesús J.. ( 2006;). Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 174: 575–584 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ragon M., Wirth T., Hollandt F., Lavenir R., Lecuit M., Le Monnier A., Brisse S.. ( 2008;). A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4: e1000146 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rychli K., Müller A., Zaiser A., Schoder D., Allerberger F., Wagner M., Schmitz-Esser S.. ( 2014;). Genome sequencing of Listeria monocytogenes Quargel listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential. PLoS One 9: e89964 [CrossRef] [PubMed].
    [Google Scholar]
  35. Scallan E., Hoekstra R. M., Angulo F. J., Tauxe R. V., Widdowson M. A., Roy S. L., Jones J. L., Griffin P. M.. ( 2011;). Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17: 7–15 [CrossRef] [PubMed].
    [Google Scholar]
  36. Shioda R., Wood P. D., Kinsell L. W.. ( 1969;). Determination of individual conjugated bile acids in human bile. J Lipid Res 10: 546–554 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000160
Loading
/content/journal/jmm/10.1099/jmm.0.000160
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error