1887

Abstract

The aim of this study was to determine experimental conditions for biofilm formation of clinical isolates of , an important opportunistic pathogen in immunocompromised patients. Biofilms were formed in microtitre plates in three different media (RPMI, Sabouraud and CLED), with inocula of 10, 10 or 10 cells ml, at pH 5.5 and 7.0, and at 35 and 28 °C, under static and shaking conditions for 72 h. Growth kinetics of biofilms were evaluated at 6, 24, 48 and 72 h. Biofilm milieu analysis were assessed by counting viable cells and quantification of nucleic acids released into biofilm supernatants. Biofilms were also analysed for proteolytic activity and antifungal resistance against amphotericin B, caspofungin, fluconazole, itraconazole and voriconazole. Finally, ultrastructural characterization of biofilms formed in microtitre plates and catheter disks was performed by scanning electron microscopy. Greater biofilm formation was observed with a starter inoculum of 10 cells ml, at pH 7.0 at 35 °C and 80 r.p.m., in both RPMI and Sabouraud media. Growth kinetics showed an increase in both viable cells and biomass with increasing incubation time, with maximum production at 48 h. Biofilms were able to disperse viable cells and nucleic acids into the supernatant throughout the developmental cycle. biofilms produced more protease than planktonic cells and showed high tolerance to amphotericin B, caspofungin and azole derivatives. Mature biofilms were formed by different morphotypes, such as blastoconidia, arthroconidia and hyphae, in a strain-specific manner. The present article details the multicellular lifestyle of and provides perspectives for further research.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000159
2015-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1277.html?itemId=/content/journal/jmm/10.1099/jmm.0.000159&mimeType=html&fmt=ahah

References

  1. Ajesh K., Sreejith K.. ( 2012;). Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance. Mycopathologia 174: 409–419 [CrossRef] [PubMed].
    [Google Scholar]
  2. Blankenship J. R., Mitchell A. P.. ( 2006;). How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9: 588–594 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chagas-Neto T. C., Chaves G. M., Colombo A. L.. ( 2008;). Update on the genus Trichosporon. Mycopathologia. 166: 121–132 [CrossRef] [PubMed].
    [Google Scholar]
  4. Charney J., Tomarelli R. M.. ( 1947;). A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171: 501–505 [PubMed].
    [Google Scholar]
  5. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal susceptibility testing of yeasts; Approved standard M27-A3 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. Colombo A. L., Padovan A. C. B., Chaves G. M.. ( 2011;). Current knowledge of Trichosporon spp. and trichosporonosis. Clin Microbiol Rev 24: 682–700 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Hoog G. S., Guarro J., Gené J., Figueiras M. J.. ( 2000;). Atlas of Clinical Fungi. , 2nd edn.. Washington: ASM Press;.
  8. de Vasconcellos A. A., Gonçalves L. M., Del Bel Cury A. A., da Silva W. J.. ( 2014;). Environmental pH influences Candida albicans biofilms regarding its structure, virulence and susceptibility to fluconazole. Microb Pathog 69-70: 39–44 [CrossRef] [PubMed].
    [Google Scholar]
  9. Di Bonaventura G., Pompilio A., Picciani C., Iezzi M., D'Antonio D., Piccolomini R.. ( 2006;). Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50: 3269–3276 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dostálková J., Procházková G., Jirku V., Krˇiklavová L., Lederer T., Suchánek M., Brányik T.. ( 2015;). Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane. Chem Pap 69: 425–432 [CrossRef]
    [Google Scholar]
  11. Douglas L. J.. ( 2002;). Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19: 139–143 [PubMed].
    [Google Scholar]
  12. Girmenia C., Pagano L., Martino B., D'Antonio D., Fanci R., Specchia G., Melillo L., Buelli M., Pizzarelli G., other authors. ( 2005;). Invasive infections caused by Trichosporon species and Geotrichum capitatum in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature. J Clin Microbiol 43: 1818–1828 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hasan F., Xess I., Wang X., Jain N., Fries B. C.. ( 2009;). Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect 11: 753–761 [CrossRef] [PubMed].
    [Google Scholar]
  14. Iturrieta-González I. A., Padovan A. C. B., Bizerra F. C., Hahn R. C., Colombo A. L.. ( 2014;). Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B. PLoS One 9: e109553 [CrossRef] [PubMed].
    [Google Scholar]
  15. Junqueira J. C., Jorge A. O. C., Barbosa J. O., Rossoni R. D., Vilela S. F. G., Costa A. C. B. P., Primo F. L., Gonçalves J. M., Tedesco A. C., Suleiman J. M.. ( 2012;). Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci. 27: 1205–1212 [CrossRef] [PubMed].
    [Google Scholar]
  16. Krcmery V. Jr, Mateička F., Kunová A., Spánik S., Gyarfás J., Sycová Z., Trupl J.. ( 1999;). Hematogenous trichosporonosis in cancer patients: report of 12 cases including 5 during prophylaxis with itraconazol. Support Care Cancer 7: 39–43 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kustimur S., Kalkanci A., Caglar K., Dizbay M., Aktas F., Sugita T.. ( 2002;). Nosocomial fungemia due to Trichosporon asteroides: firstly described bloodstream infection. Diagn Microbiol Infect Dis 43: 167–170 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lakshmi V., Das N.. ( 2013;). Removal of caffeine from industrial wastewater using Trichosporon asahii. J Environ Biol 34: 701–708 [PubMed].
    [Google Scholar]
  19. Lattif A. A., Mukherjee P. K., Chandra J., Swindell K., Lockhart S. R., Diekema D. J., Pfaller M. A., Ghannoum M. A.. ( 2010;). Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis. Int J Med Microbiol 300: 265–270 [CrossRef] [PubMed].
    [Google Scholar]
  20. Liao Y., Yang S., Cong L., Lu X., Ao J., Yang R.. ( 2014;). In vitro activities of antifungal combinations against biofilms and planktonic forms of clinical Trichosporon asahii isolates. Antimicrob Agents Chemother 58: 7615–7616 [CrossRef] [PubMed].
    [Google Scholar]
  21. Liao Y., Zhao H., Lu X., Yang S., Zhou J., Yang R.. ( 2015;). Efficacy of ethanol against Trichosporon asahii biofilm in vitro. Med Mycol 53: 396–404 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lu S. H., Dai Y. T.. ( 2009;). Normal body temperature and the effects of age, sex, ambient temperature and body mass index on normal oral temperature: a prospective, comparative study. Int J Nurs Stud 46: 661–668 [CrossRef] [PubMed].
    [Google Scholar]
  23. Magalhães A. R., Mondino S. S. B., Silva M., Nishikawa M. M.. ( 2008;). Morphological and biochemical characterization of the aetiological agents of white piedra. Mem Inst Oswaldo Cruz 103: 786–790 [CrossRef] [PubMed].
    [Google Scholar]
  24. Martinez L. R., Casadevall A.. ( 2006;). Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50: 1021–1033 [CrossRef] [PubMed].
    [Google Scholar]
  25. Martins M., Uppuluri P., Thomas D. P., Cleary I. A., Henriques M., Lopez-Ribot J. L., Oliveira R.. ( 2010;). Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169: 323–331 [CrossRef] [PubMed].
    [Google Scholar]
  26. Martins M., Henriques M., Lopez-Ribot J. L., Oliveira R.. ( 2012;). Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55: 80–85 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mendes A., Mores A. U., Carvalho A. P., Rosa R. T., Samaranayake L. P., Rosa E. A. R.. ( 2007;). Candida albicans biofilms produce more secreted aspartyl protease than the planktonic cells. Biol Pharm Bull 30: 1813–1815 [CrossRef] [PubMed].
    [Google Scholar]
  28. Miceli M. H., Díaz J. A., Lee S. A.. ( 2011;). Emerging opportunistic yeast infections. Lancet Infect Dis 11: 142–151 [CrossRef] [PubMed].
    [Google Scholar]
  29. Mukherjee P. K., Chandra J., Kuhn D. M., Ghannoum M. A.. ( 2003;). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71: 4333–4340 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mulcahy H., Charron-Mazenod L., Lewenza S.. ( 2008;). Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4: e1000213 [CrossRef] [PubMed].
    [Google Scholar]
  31. Nailis H., Kucharíková S., Ricicová M., Van Dijck P., Deforce D., Nelis H., Coenye T.. ( 2010;). Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and – independent gene expression. BMC Microbiol 10: 114 [CrossRef] [PubMed].
    [Google Scholar]
  32. Nett J. E., Sanchez H., Cain M. T., Ross K. M., Andes D. R.. ( 2011;). Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10: 1660–1669 [CrossRef] [PubMed].
    [Google Scholar]
  33. Peeters E., Nelis H. J., Coenye T.. ( 2008;). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72: 157–165 [CrossRef] [PubMed].
    [Google Scholar]
  34. Perumal P., Mekala S., Chaffin W. L.. ( 2007;). Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51: 2454–2463 [CrossRef] [PubMed].
    [Google Scholar]
  35. Pfaller M. A., Diekema D. J.. ( 2007;). Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133–163 [CrossRef] [PubMed].
    [Google Scholar]
  36. Pusateri C. R., Monaco E. A., Edgerton M.. ( 2009;). Sensitivity of Candida albicans biofilm cells grown on denture acrylic to antifungal proteins and chlorhexidine. Arch Oral Biol 54: 588–594 [CrossRef] [PubMed].
    [Google Scholar]
  37. Rajendran R., Williams C., Lappin D. F., Millington O., Martins M., Ramage G.. ( 2013;). Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12: 420–429 [CrossRef] [PubMed].
    [Google Scholar]
  38. Robbins N., Uppuluri P., Nett J., Rajendran R., Ramage G., Lopez-Ribot J. L., Andes D., Cowen L. E.. ( 2011;). Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7: e1002257 [CrossRef] [PubMed].
    [Google Scholar]
  39. Rodriguez-Tudela J. L., Diaz-Guerra T. M., Mellado E., Cano V., Tapia C., Perkins A., Gomez-Lopez A., Rodero L., Cuenca-Estrella M.. ( 2005;). Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 49: 4026–4034 [CrossRef] [PubMed].
    [Google Scholar]
  40. Ruiz L. S., Khouri S., Hahn R. C., da Silva E. G., de Oliveira V. K., Gandra R. F., Paula C. R.. ( 2013;). Candidemia by species of the Candida parapsilosis complex in children's hospital: prevalence, biofilm production and antifungal susceptibility. Mycopathologia 175: 231–239 [CrossRef] [PubMed].
    [Google Scholar]
  41. Shin J. H., Kee S. J., Shin M. G., Kim S. H., Shin D. H., Lee S. K., Suh S. P., Ryang D. W.. ( 2002;). Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40: 1244–1248 [CrossRef] [PubMed].
    [Google Scholar]
  42. Silva R. B. O., Fusco-Almeida A. M., Matsumoto M. T., Baeza L. C., Benaducci T., Mendes-Giannini M. J. S.. ( 2008;). Genetic diversity and antifungal susceptibility testing of Trichosporon asahii isolated of Intensive Care Units patients. Braz J Microbiol 39: 585–592 [CrossRef] [PubMed].
    [Google Scholar]
  43. Silvestre A. J. M, Miranda A. B. R., Camargo Z. P. ( 2010;). Trichosporon species isolated from the perigenital region, urine and catheters of a Brazilian population. Braz J Microbiol 41: 628–634 [CrossRef] [PubMed].
    [Google Scholar]
  44. Sun W., Su J., Xu S., Yan D.. ( 2012;). Trichosporon asahii causing nosocomial urinary tract infections in intensive care unit patients: genotypes, virulence factors and antifungal susceptibility testing. J Med Microbiol 61: 1750–1757 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sund-Levander M., Forsberg C., Wahren L. K.. ( 2002;). Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci 16: 122–128 [CrossRef] [PubMed].
    [Google Scholar]
  46. Uppuluri P., Chaturvedi A. K., Srinivasan A., Banerjee M., Ramasubramaniam A. K., Köhler J. R., Kadosh D., Lopez-Ribot J. L.. ( 2010;). Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6: e1000828 [CrossRef] [PubMed].
    [Google Scholar]
  47. Vazquez J. A.. ( 2010;). Trichosporon infection. Curr Fungal Infect Rep 4: 52–58 [CrossRef]
    [Google Scholar]
  48. Vila T. V., Ishida K., de Souza W., Prousis K., Calogeropoulou T., Rozental S.. ( 2013;). Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother 68: 113–125 [CrossRef] [PubMed].
    [Google Scholar]
  49. Waalen J., Buxbaum J. N.. ( 2011;). Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol A Biol Sci Med Sci 66A: 487–492 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wolf D. G., Falk R., Hacham M., Theelen B., Boekhout T., Scorzetti G., Shapiro M., Block C., Salkin I. F., Polacheck I.. ( 2001;). Multidrug-resistant Trichosporon asahii infection of nongranulocytopenic patients in three intensive care units. J Clin Microbiol 39: 4420–4425 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000159
Loading
/content/journal/jmm/10.1099/jmm.0.000159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error