1887

Abstract

In an study with five clinical isolates of dermatophytes, the MIC and MIC values of silver nanoparticles (AgNPs) ranged from 5 to16 and from 15 to 32 μg ml, respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC and MIC values of AgNPs reaching 3–11 and 12–23 μg ml, respectively, according to the examined species. was the most sensitive fungus to AgNPs, while was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of -inoculated guinea pigs treated with 13 μg ml AgNPs combined with APACP treatment delivered for 2 min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000133
2015-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1151.html?itemId=/content/journal/jmm/10.1099/jmm.0.000133&mimeType=html&fmt=ahah

References

  1. Abanmi A., Bakheshwain S., El Khizzi N., Zouman A. R., Hantirah S., Al Harthi F., Al Jamal M., Rizvi S. S., Ahmad M., Tariq M.. ( 2008;). Characteristics of superficial fungal infections in the Riyadh region of Saudi Arabia. Int J Dermatol 47: 229–235 [CrossRef] [PubMed].
    [Google Scholar]
  2. Anderson L. C.. ( 1987;). Guinea pig husbandry and medicine. Vet Clin North Am Small Anim Pract 17: 1045–1060 [CrossRef] [PubMed].
    [Google Scholar]
  3. Banerjee J., Narendhirakannan R. T.. ( 2011;). Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct 6: 961–968.
    [Google Scholar]
  4. Bayraktar H., Ghosh P. S., Rotello V. M., Knapp M. J.. ( 2006;). Disruption of protein-protein interactions using nanoparticles: inhibition of cytochrome c peroxidase. Chem Commun (Camb) 13: 1390–1392 [CrossRef] [PubMed].
    [Google Scholar]
  5. Becker K. H., Schoenbach K. H., Eden J. G.. ( 2006;). Microplasmas and applications. J Phys D Appl Phys 39: R55–R70 [CrossRef].
    [Google Scholar]
  6. Bhinder S. S., Dadra P.. ( 2009;). Application of nanostructures and new nano particles as advanced biomaterials. Asian J Chem 21: S167–S171.
    [Google Scholar]
  7. Brandelli A., Daroit D. J., Riffel A.. ( 2010;). Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85: 1735–1750 [CrossRef] [PubMed].
    [Google Scholar]
  8. Brown S. J., Askenase P. W.. ( 1982;). Blood eosinophil and basophil responses in guinea pigs parasitized by Amblyomma americanum ticks. Am J Trop Med Hyg 31: 593–598 [PubMed].
    [Google Scholar]
  9. CLSI ( 2002;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi Approved Standard, NCCLS Document M38-A Villanova, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  10. Daeschlein G., Scholz S., Ahmed R., Majumdar A., von Woedtke T., Haase H., Niggemeier M., Kindel E., Brandenburg R., other authors. ( 2012;). Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges 10: 509–515 [PubMed].
    [Google Scholar]
  11. del Palacio A., Garau M., Gonzalez-Escalada A., Calvo M. T.. ( 2000;). Trends in the treatment of dermatophytosis. Rev. Iberoam Mic 17: 148–158.
    [Google Scholar]
  12. El-Rafie M. H., Mohamed A. A., Shaheen Th.I., Hebeish A.. ( 2010;). Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80: 779–782 [CrossRef].
    [Google Scholar]
  13. Fatima F., Bajpai P., Pathak N., Singh S., Priya S., Verma S. R.. ( 2015;). Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol 15: 52 [CrossRef] [PubMed].
    [Google Scholar]
  14. Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O.. ( 2000;). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52: 662–668 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fischer N. O., McIntosh C. M., Simard J. M., Rotello V. M.. ( 2002;). Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci U S A 99: 5018–5023 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gogoi S. K., Gopinath P., Paul A., Ramesh A., Ghosh S. S., Chattopadhyay A.. ( 2006;). Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22: 9322–9328 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gong P., Li H., He X., Wang K., Hu J., Tan W., Zhang S., Yang X.. ( 2007;). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18: 285604 [CrossRef].
    [Google Scholar]
  18. Gupta A., Silver S.. ( 1998;). Silver as a biocide: will resistance become a problem?. Nat Biotechnol 16: 888–890 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hao X., Mattson A. M., Edelblute C. M., Malik M. A., Heller L. C., Kolb J. F.. ( 2014;). Nitric oxide generation with an air operated non-thermal plasma jet and associated microbial inactivation mechanisms. Plasma Process Polym 11: 1044–1056 [CrossRef].
    [Google Scholar]
  20. Hong Y. C., Uhm H. S.. ( 2007;). Air plasma jet with hollow electrodes at atmospheric pressure. Phys Plasmas 14: 053503 [CrossRef].
    [Google Scholar]
  21. Kim K. J., Sung W. S., Moon S. K., Choi J. S., Kim J. G., Lee D. G.. ( 2008;). Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18: 1482–1484 [PubMed].
    [Google Scholar]
  22. Kolb J. F., Mohamed A.-A. H., Price R. O., Swanson R. J., Bowman A., Chiavarini R. L., Stacey M., Schoenbach K. H.. ( 2008;). Cold atmospheric pressure air plasma jet for medical applications. Appl Phys Lett 92: 241501 [CrossRef].
    [Google Scholar]
  23. Kong M. G., Keidar M., Ostrikov K.. ( 2011;). Plasmas meet nanoparticles—where synergies can advance the frontier of medicine. J Phys D Appl Phys 44: 174018 [CrossRef].
    [Google Scholar]
  24. Konwarh R., Gogoi B., Philip R., Laskar M. A., Karak N.. ( 2011;). Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial green silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B Biointerfaces 84: 338–345 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kvam E., Davis B., Mondello F., Garner A. L.. ( 2012;). Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56: 2028–2036 [CrossRef] [PubMed].
    [Google Scholar]
  26. Laroussi M., Leipold F.. ( 2004;). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233: 81–86 [CrossRef].
    [Google Scholar]
  27. Laroussi M., Hynes W., Akan T., Lu X., Tendero C.. ( 2008;). The plasma pencil: a source of hypersonic cold plasma bullets for biomedical applications. IEEE Trans Plasma Sci 36: 1298–1299 [CrossRef].
    [Google Scholar]
  28. Li W. R., Xie X. B., Shi Q. S., Zeng H. Y., Ou-Yang Y. S., Chen Y. B.. ( 2010;). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85: 1115–1122 [CrossRef] [PubMed].
    [Google Scholar]
  29. Machala Z., Janda M., Hensel K., Jedlovsky I., Leštinská L., Foltin V., Martišovitš V., Morvová M.. ( 2007;). Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243: 194–201 [CrossRef].
    [Google Scholar]
  30. Mai-Prochnow A., Murphy A. B., McLean K. M., Kong M. G., Ostrikov K. K.. ( 2014;). Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents 43: 508–517 [CrossRef] [PubMed].
    [Google Scholar]
  31. Maneewattanapinyo P., Banlunara W., Thammacharoen C., Ekgasit S., Kaewamatawong T.. ( 2011;). An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73: 1417–1423 [CrossRef] [PubMed].
    [Google Scholar]
  32. Matsumura Y., Yoshikata K., Kunisaki S., Tsuchido T.. ( 2003;). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69: 4278–4281 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mohamed A.-A.H., Kolb J. F., Schoenbach K.. ( 2010;). Low temperature, atmospheric pressure, direct current micro-plasma jet operated in air, nitrogen and oxygen. Eur Phys J D 60: 517–522 [CrossRef].
    [Google Scholar]
  34. Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L. H.. ( 2001;). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226: 1–21 [CrossRef] [PubMed].
    [Google Scholar]
  35. Monteiro D. R., Gorup L. F., Silva S., Negri M., de Camargo E. R., Oliveira R., Barbosa D. B., Henriques M.. ( 2011;). Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27: 711–719 [CrossRef] [PubMed].
    [Google Scholar]
  36. Moreau M., Feuilloley M. G. J., Veron W., Meylheuc T., Chevalier S., Brisset J. L., Orange N.. ( 2007;). Gliding arc discharge in the potato pathogen Erwinia carotovora subsp. atroseptica: mechanism of lethal action and effect on membrane-associated molecules. Appl Environ Microbiol 73: 5904–5910 [CrossRef] [PubMed].
    [Google Scholar]
  37. Muhsin T. M., Aubaid A. H.. ( 2001;). Partial purification and some biochemical characteristics of exocellular keratinase from Trichophyton mentagrophytes var. erinacei. Mycopathologia 150: 121–125 [CrossRef] [PubMed].
    [Google Scholar]
  38. Mulfinger L., Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A., Boritz C.. ( 2007;). Synthesis and study of silver nanoparticles. J Chem Educ 84: 322–325 [CrossRef].
    [Google Scholar]
  39. Noorbakhsh F., Rezaie S., Shahverdi A. R.. ( 2011;). Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. Int Proc Chem Biol Environ Eng 5: 364–367.
    [Google Scholar]
  40. Ouf S. A., Basher A. H., Mohamed A.-A.H.. ( 2015a;). Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric (in press).
    [Google Scholar]
  41. Ouf S. A., Mohamed A.-A.H., El-Sayed W. S.. ( 2015b;). Fungal decontamination of fleshy fruit water washes by double atmospheric pressure cold plasma (DAPCP). Clean-Soil Air Water (in press). [CrossRef]
    [Google Scholar]
  42. Panáček A., Kolár M., Vecerová R., Prucek R., Soukupová J., Kryštof V., Hamal P., Zborˇil R., Kvítek L.. ( 2009;). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333–6340 [CrossRef] [PubMed].
    [Google Scholar]
  43. Paul S., Dubey R. C., Maheswari D. K., Kang S. C.. ( 2011;). Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Contr 22: 725–731 [CrossRef].
    [Google Scholar]
  44. Quesenberry K. E., Rosenthal K. L.. ( 2004;). Endocrine diseases. . In Ferrets, Rabbits and Rodents Clinical Medicine and Surgery, 2nd edn.., pp. 79–90. Edited by Quesenberry K. E., Carpenter J. W.. Philadelphia: W.B. Saunders; [CrossRef].
    [Google Scholar]
  45. Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J. B.. ( 2008;). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61: 869–876 [CrossRef] [PubMed].
    [Google Scholar]
  46. Rothwell T. L. W., Pope S. E., Rajczyk Z. K., Collins G. H.. ( 1991;). Haematological and pathological responses to experimental Trixacarus caviae infection in guinea pigs. J Comp Pathol 104: 179–185 [CrossRef] [PubMed].
    [Google Scholar]
  47. Ryu Y.-H., Kim Y.-H., Lee J.-Y., Shim G.-B., Uhm H.-S., Park G., Choi E. H.. ( 2013;). Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One 8: e66231 [CrossRef] [PubMed].
    [Google Scholar]
  48. Schins R. P. F.. ( 2002;). Mechanisms of genotoxicity of particles and fibers. Inhal Toxicol 14: 57–78 [CrossRef] [PubMed].
    [Google Scholar]
  49. Shin Y. J., Kwak J. I., An Y. J.. ( 2012;). Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88: 524–529 [CrossRef] [PubMed].
    [Google Scholar]
  50. Vallyathan V., Shi X.. ( 1997;). The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105: (Suppl. 1), 165–177 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wu Z., Zhang B., Yan B.. ( 2009;). Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci 10: 4198–4209 [CrossRef] [PubMed].
    [Google Scholar]
  52. Zeng F., Hou C., Wu S. Z., Liu X. X., Tong Z., Yu S. N.. ( 2007;). Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18: 1–8.
    [Google Scholar]
  53. Zharov V. P., Mercer K. E., Galitovskaya E. N., Smeltzer M. S.. ( 2006;). Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90: 619–627 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000133
Loading
/content/journal/jmm/10.1099/jmm.0.000133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error