1887

Abstract

Macrolide–lincosamide–streptogramin B resistance in is mostly due to the resistance determinant. Here, we describe a sensitive and rapid molecular method to detect in to contribute to the wider epidemiological study. Five sets of loop-mediated isothermal amplification (LAMP) primers were designed and optimized for rapid detection of . The specificity and sensitivity of the primers for were detected, and the LAMP assay was compared to conventional PCR with 80 clinical isolates of . Real-time monitoring of turbidity and chromogenic reaction were used to determine negative and positive results. A total of 26 pathogenic bacterial strains of different species were found to be negative for , which indicated the high specificity of the primers. was detected in 78.8 % (63/80) of the clinical isolates by both LAMP and conventional PCR. The detection limit of LAMP was 36.1 pg DNA μl and its sensitivity was 10-fold greater than that of conventional PCR. This study is the first report regarding the development and application of the LAMP assay for detection of the gene in strains. The developed LAMP method is sensitive, specific and provides a user-friendly visual approach for the rapid detection of -bearing .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000109
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/8/854.html?itemId=/content/journal/jmm/10.1099/jmm.0.000109&mimeType=html&fmt=ahah

References

  1. Anthony Johnson A.M., Dasgupta I., Sai Gopal D.V. 2014; Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. J Virol Methods 203:9–14 [View Article][PubMed]
    [Google Scholar]
  2. Aziz E.E., Ayis S., Gould F.K., Rawlins M.D. 2001; Risk factors for the development of Clostridium difficile toxin-associated diarrhoea: a pilot study. Pharmacoepidemiol Drug Saf 10:303–308 [View Article][PubMed]
    [Google Scholar]
  3. Belén Flórez A., Alegría Á., Rossi F., Delgado S., Felis G.E., Torriani S., Mayo B. 2014; Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. BioMed Res Int 2014:746–859[PubMed]
    [Google Scholar]
  4. Bouza E. 2012; Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect 18:(Suppl 6)5–12 [View Article][PubMed]
    [Google Scholar]
  5. Boyanton B.L. Jr, Sural P., Loomis C.R., Pesta C., Gonzalez-Krellwitz L., Robinson-Dunn B., Riska P. 2012; Loop-mediated isothermal amplification compared to real-time PCR and enzyme immunoassay for toxigenic Clostridium difficile detection. J Clin Microbiol 50:640–645 [View Article][PubMed]
    [Google Scholar]
  6. Curtis K.A., Niedzwiedz P.L., Youngpairoj A.S., Rudolph D.L., Owen S.M. 2014; Real-time detection of HIV-2 by reverse transcription-loop-mediated isothermal amplification. J Clin Microbiol 52:2674–2676 [View Article][PubMed]
    [Google Scholar]
  7. de Franchis R., Cross N.C., Foulkes N.S., Cox T.M. 1988; A potent inhibitor of Taq polymerase copurifies with human genomic DNA. Nucleic Acids Res 16:10355 [View Article][PubMed]
    [Google Scholar]
  8. Dong D., Zhang L., Chen X., Jiang C., Yu B., Wang X., Peng Y. 2013; Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int J Antimicrob Agents 41:80–84 [View Article][PubMed]
    [Google Scholar]
  9. Farrow K.A., Lyras D., Rood J.I. 2001; Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile . Microbiology 147:2717–2728[PubMed] [CrossRef]
    [Google Scholar]
  10. Francois P., Tangomo M., Hibbs J., Bonetti E.J., Boehme C.C., Notomi T., Perkins M.D., Schrenzel J. 2011; Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol 62:41–48 [View Article][PubMed]
    [Google Scholar]
  11. Fu S., Qu G., Guo S., Ma L., Zhang N., Zhang S., Gao S., Shen Z. 2011; Applications of loop-mediated isothermal DNA amplification. Appl Biochem Biotechnol 163:845–850 [View Article][PubMed]
    [Google Scholar]
  12. Gerding D.N. 1989; Disease associated with Clostridium difficile infection. Ann Intern Med 110:255–257 [View Article][PubMed]
    [Google Scholar]
  13. Huang H., Weintraub A., Fang H., Wu S., Zhang Y., Nord C.E. 2010; Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe 16:633–635 [View Article][PubMed]
    [Google Scholar]
  14. Johnson S., Samore M.H., Farrow K.A., Killgore G.E., Tenover F.C., Lyras D., Rood J.I., DeGirolami P., Baltch A.L., other authors. 1999; Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–1651 [View Article][PubMed]
    [Google Scholar]
  15. Kaneko H., Kawana T., Fukushima E., Suzutani T. 2007; Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 70:499–501 [View Article][PubMed]
    [Google Scholar]
  16. Kato H., Kato N., Katow S., Maegawa T., Nakamura S., Lyerly D.M. 1999; Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett 175:197–203 [View Article][PubMed]
    [Google Scholar]
  17. Kato H., Yokoyama T., Kato H., Arakawa Y. 2005; Rapid and simple method for detecting the toxin B gene of Clostridium difficile in stool specimens by loop-mediated isothermal amplification. J Clin Microbiol 43:6108–6112 [View Article][PubMed]
    [Google Scholar]
  18. Kato N., Ou C.Y., Kato H., Bartley S.L., Brown V.K., Dowell V.R. Jr, Ueno K. 1991; Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol 29:33–37[PubMed]
    [Google Scholar]
  19. Kelly C.P., Pothoulakis C., LaMont J.T. 1994; Clostridium difficile colitis. N Engl J Med 330:257–262 [View Article][PubMed]
    [Google Scholar]
  20. Knight D.R., Squire M.M., Riley T.V. 2014; Laboratory detection of Clostridium difficile in piglets in Australia. J Clin Microbiol 52:3856–3862 [View Article][PubMed]
    [Google Scholar]
  21. Li X., Liu W., Wang J., Zou D., Wang X., Yang Z., Yin Z., Cui Q., Shang W., other authors. 2012; Rapid detection of Trichinella spiralis larvae in muscles by loop-mediated isothermal amplification. Int J Parasitol 42:1119–1126 [View Article][PubMed]
    [Google Scholar]
  22. Martineau F., Picard F.J., Lansac N., Ménard C., Roy P.H., Ouellette M., Bergeron M.G. 2000; Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus Staphylococcus epidermidis . Antimicrob Agents Chemother 44:231–238 [View Article][PubMed]
    [Google Scholar]
  23. McGlone S.M., Bailey R.R., Zimmer S.M., Popovich M.J., Tian Y., Ufberg P., Muder R.R., Lee B.Y. 2012; The economic burden of Clostridium difficile . Clin Microbiol Infect 18:282–289 [View Article][PubMed]
    [Google Scholar]
  24. Mori Y., Kitao M., Tomita N., Notomi T. 2004; Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59:145–157 [View Article][PubMed]
    [Google Scholar]
  25. Nagamine K., Hase T., Notomi T. 2002; Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229 [View Article][PubMed]
    [Google Scholar]
  26. Ni X., McManus D.P., Yan H., Yang J., Lou Z., Li H., Li L., Lei M., Cai J., other authors. 2014; Loop-mediated isothermal amplification (LAMP) assay for the identification of Echinococcus multilocularis infections in canine definitive hosts. Parasit Vectors 7:254 [View Article][PubMed]
    [Google Scholar]
  27. Norén T., Alriksson I., Andersson J., Akerlund T., Unemo M. 2011; Rapid and sensitive loop-mediated isothermal amplifi‐cation test for Clostridium difficile detection challenges cytotoxin B cell test and culture as gold standard. J Clin Microbiol 49:710–711 [View Article][PubMed]
    [Google Scholar]
  28. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. 2000; Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63 [View Article][PubMed]
    [Google Scholar]
  29. Poon L.L., Leung C.S., Tashiro M., Chan K.H., Wong B.W., Yuen K.Y., Guan Y., Peiris J.S. 2004; Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem 50:1050–1052 [View Article][PubMed]
    [Google Scholar]
  30. Schmidt C., Löffler B., Ackermann G. 2007; Antimicrobial phenotypes and molecular basis in clinical strains of Clostridium difficile . Diagn Microbiol Infect Dis 59:1–5 [View Article][PubMed]
    [Google Scholar]
  31. Slimings C., Riley T.V. 2014; Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 69:881–891 [View Article][PubMed]
    [Google Scholar]
  32. Spigaglia P., Carucci V., Barbanti F., Mastrantonio P. 2005; ErmB determinants and Tn916-like elements in clinical isolates of Clostridium difficile . Antimicrob Agents Chemother 49:2550–2553 [View Article][PubMed]
    [Google Scholar]
  33. Spigaglia P., Barbanti F., Mastrantonio P. 2007; Detection of a genetic linkage between genes coding for resistance to tetracycline and erythromycin in Clostridium difficile . Microb Drug Resist 13:90–95 [View Article][PubMed]
    [Google Scholar]
  34. Spigaglia P., Barbanti F., Mastrantonio P., Ackermann G., Balmelli C., Barbut F., Bouza E., Brazier J., Delmee M., other authors. 2011; Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 66:2227–2234 [View Article][PubMed]
    [Google Scholar]
  35. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312 [View Article][PubMed]
    [Google Scholar]
  36. Tomita N., Mori Y., Kanda H., Notomi T. 2008; Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882 [View Article][PubMed]
    [Google Scholar]
  37. Ushikubo H. 2004; [Principle of LAMP method–a simple and rapid gene amplification method]. Uirusu 54:107–112 [View Article][PubMed]
    [Google Scholar]
  38. Wang G., Shang Y., Wang Y., Tian H., Liu X. 2013; Comparison of a loop-mediated isothermal amplification for orf virus with quantitative real-time PCR. Virol J 10:138 [View Article][PubMed]
    [Google Scholar]
  39. Wang X., Seo D.J., Lee M.H., Choi C., Onderdonk A.B. 2014; Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species. J Clin Microbiol 52:557–563 [View Article][PubMed]
    [Google Scholar]
  40. Zhang J., Zhu J., Ren H., Zhu S., Zhao P., Zhang F., Lv H., Hu D., Hao L., other authors. 2013; Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification. J Clin Microbiol 51:3250–3256 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000109
Loading
/content/journal/jmm/10.1099/jmm.0.000109
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error