1887

Abstract

() is commonly associated with hospital-acquired infections and is known to form biofilms. Bacteria inside biofilms display an increased resistance to chemotherapeutics and host immune defences. Efficient antibiotics or combination therapy are urgently needed to treat patients with biofilm-associated MRSA infections. The objective of the current study was to evaluate the antimicrobial activities of totarol alone or in combination with berberine chloride (BBR) against grown in planktonic and biofilm cultures. The synergistic antimicrobial effects between BBR and totarol were observed in all tested strains grown in biofilms using a chequerboard microdilution method, with the fractional inhibitory concentration index values ranging from 0.125 to 0.375. No antagonistic activity was observed in any of the strains tested in suspension or biofilm cultures. The synergistic activity against biofilms was also corroborated by confocal laser scanning microscopy and adhesion assays. Moreover, the present study demonstrated that combination BBR and totarol treatment effectively decreased the formation of biofilms by affecting extracellular genomic DNA release and polysaccharide intercellular adhesin expression. Subsequently, real-time reverse transcriptase PCR analysis revealed that the combination of BBR and totarol effectively inhibited the transcription of the biofilm-related genes , and . These results suggest that the combination of totarol and BBR is momentous for the further development of a therapy protocol against biofilms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000106
2015-08-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/8/891.html?itemId=/content/journal/jmm/10.1099/jmm.0.000106&mimeType=html&fmt=ahah

References

  1. Abdelhady W., Bayer A.S., Seidl K., Moormeier D.E., Bayles K.W., Cheung A., Yeaman M.R., Xiong Y.Q.. ( 2014;). Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis 209: 1231–1240 [CrossRef] [PubMed].
    [Google Scholar]
  2. Adams D., Quayum M., Worthington T., Lambert P., Elliott T.. ( 2005;). Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J Hosp Infect 61: 287–290 [CrossRef] [PubMed].
    [Google Scholar]
  3. Amaral L., Viveiros M., Molnar J.. ( 2004;). Antimicrobial activity of phenothiazines. In Vivo 18: 725–731 [PubMed].
    [Google Scholar]
  4. Amin A.H., Subbaiah T.V., Abbasi K.M.. ( 1969;). Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Can J Microbiol 15: 1067–1076 [CrossRef] [PubMed].
    [Google Scholar]
  5. Arciola C.R., Baldassarri L., Montanaro L.. ( 2001;). Presence of icaA icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 39: 2151–2156 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bubeck Wardenburg J., Bae T., Otto M., Deleo F.R., Schneewind O.. ( 2007;). Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13: 1405–1406 [CrossRef] [PubMed].
    [Google Scholar]
  7. Casey A.L., Worthington T., Lambert P.A., Quinn D., Faroqui M.H., Elliott T.S.. ( 2003;). A randomized, prospective clinical trial to assess the potential infection risk associated with the PosiFlow needleless connector. J Hosp Infect 54: 288–293 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cernáková M., Kostálová D.. ( 2002;). Antimicrobial activity of berberine–a constituent of Mahonia aquifolium. Folia Microbiol (Praha) 47: 375–378 [CrossRef] [PubMed].
    [Google Scholar]
  9. Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H.. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996–1006 [PubMed].
    [Google Scholar]
  10. Chung J.G., Wu L.T., Chu C.B., Jan J.Y., Ho C.C., Tsou M.F., Lu H.F., Chen G.W., Lin J.G., Wang T.F.. ( 1999;). Effects of berberine on arylamine N-acetyltransferase activity in human bladder tumour cells. Food Chem Toxicol 37: 319–326 [CrossRef] [PubMed].
    [Google Scholar]
  11. Clinical and Laboratory Standards Institute (CLSI) ( 2004;). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Informational Supplement M31-S1 Wayne, PA: Clinical and Laboratory Standards Institute;.
  12. Clinical and Laboratory Standards Institute (CLSI) ( 2009;). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7-A8, 8th edn. Wayne, PA: Clinical and Laboratory Standards Institute;.
  13. Clinical and Laboratory Standards Institute (CLSI) ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing. 21st Informational Supplement M100-S21 Wayne, PA: Clinical and Laboratory Standards Institute;.
  14. Cramton S.E., Gerke C., Schnell N.F., Nichols W.W., Götz F.. ( 1999;). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67: 5427–5433 [PubMed].
    [Google Scholar]
  15. Das T., Sharma P.K., Busscher H.J., van der Mei H.C., Krom B.P.. ( 2010;). Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76: 3405–3408 [CrossRef] [PubMed].
    [Google Scholar]
  16. Dunman P.M., Murphy E., Haney S., Palacios D., Tucker-Kellogg G., Wu S., Brown E.L., Zagursky R.J., Shlaes D., Projan S.J.. ( 2001;). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183: 7341–7353 [CrossRef] [PubMed].
    [Google Scholar]
  17. Durham-Colleran M.W., Verhoeven A.B., van Hoek M.L.. ( 2010;). Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 59: 457–465 [CrossRef] [PubMed].
    [Google Scholar]
  18. Freeman D.J., Falkiner F.R., Keane C.T.. ( 1989;). New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42: 872–874 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gilbert P., Allison D.G., McBain A.J.. ( 2002;). Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?. J Appl Microbiol 92: (Suppl), 98S–110S [CrossRef] [PubMed].
    [Google Scholar]
  20. Haraguchi H., Oike S., Muroi H., Kubo I.. ( 1996;). Mode of antibacterial action of totarol, a diterpene from Podocarpus nagi. Planta Med 62: 122–125 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hayashi K., Minoda K., Nagaoka Y., Hayashi T., Uesato S.. ( 2007;). Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg Med Chem Lett 17: 1562–1564 [CrossRef] [PubMed].
    [Google Scholar]
  22. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F.. ( 1996;). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20: 1083–1091 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hendry E.R., Worthington T., Conway B.R., Lambert P.A.. ( 2009;). Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64: 1219–1225 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hsieh P.C., Siegel S.A., Rogers B., Davis D., Lewis K.. ( 1998;). Bacteria lacking a multidrug pump: a sensitive tool for drug discovery. Proc Natl Acad Sci U S A 95: 6602–6606 [CrossRef] [PubMed].
    [Google Scholar]
  25. Hsu C.Y., Lin M.H., Chen C.C., Chien S.C., Cheng Y.H., Su I.N., Shu J.C.. ( 2011;). Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus. FEMS Immunol Med Microbiol 63: 236–247 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hübner N.O., Matthes R., Koban I., Rändler C., Müller G., Bender C., Kindel E., Kocher T., Kramer A.. ( 2010;). Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23: (Suppl), 28–34 [CrossRef] [PubMed].
    [Google Scholar]
  27. Iwasa K., Lee D.U., Kang S.I., Wiegrebe W.. ( 1998;). Antimicrobial activity of 8-alkyl- and 8-phenyl-substituted berberines and their 12-bromo derivatives. J Nat Prod 61: 1150–1153 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kim M.B., Shaw J.T.. ( 2010;). Synthesis of antimicrobial natural products targeting FtsZ: (+)-totarol and related totarane diterpenes. Org Lett 12: 3324–3327 [CrossRef] [PubMed].
    [Google Scholar]
  29. Koziel J., Maciag-Gudowska A., Mikolajczyk T., Bzowska M., Sturdevant D.E., Whitney A.R., Shaw L.N., DeLeo F.R., Potempa J.. ( 2009;). Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 4: e5210 [CrossRef] [PubMed].
    [Google Scholar]
  30. Kubo I., Muroi H., Himejima M.. ( 1992;). Antibacterial activity of totarol and its potentiation. J Nat Prod 55: 1436–1440 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lewis K.. ( 2001;). In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3: 247–254 [PubMed].
    [Google Scholar]
  32. Lou Q., Zhu T., Hu J., Ben H., Yang J., Yu F., Liu J., Wu Y., Fischer A., other authors. ( 2011;). Role of the SaeRS two-component regulatory system in Staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiol 11: 146 [CrossRef] [PubMed].
    [Google Scholar]
  33. Marquez B.. ( 2005;). Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87: 1137–1147 [CrossRef] [PubMed].
    [Google Scholar]
  34. Muroi H., Kubo I.. ( 1996;). Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. J Appl Bacteriol 80: 387–394 [CrossRef] [PubMed].
    [Google Scholar]
  35. Nguyen H.M., Graber C.J.. ( 2010;). Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer?. J Antimicrob Chemother 65: 24–36 [CrossRef] [PubMed].
    [Google Scholar]
  36. Odds F.C.. ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52: 1 [CrossRef] [PubMed].
    [Google Scholar]
  37. Oo T.Z., Cole N., Garthwaite L., Willcox M.D., Zhu H.. ( 2010;). Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J Antimicrob Chemother 65: 1243–1251 [CrossRef] [PubMed].
    [Google Scholar]
  38. Pagès J.M., Masi M., Barbe J.. ( 2005;). Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11: 382–389 [CrossRef] [PubMed].
    [Google Scholar]
  39. Panizzi P., Nahrendorf M., Figueiredo J.L., Panizzi J., Marinelli B., Iwamoto Y., Keliher E., Maddur A.A., Waterman P., other authors. ( 2011;). In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17: 1142–1146 [CrossRef] [PubMed].
    [Google Scholar]
  40. Park K.D., Lee J.H., Kim S.H., Kang T.H., Moon J.S., Kim S.U.. ( 2006;). Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem Lett 16: 3913–3916 [CrossRef] [PubMed].
    [Google Scholar]
  41. Qiu J., Feng H., Lu J., Xiang H., Wang D., Dong J., Wang J., Wang X., Liu J., Deng X.. ( 2010;). Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microbiol 76: 5846–5851 [CrossRef] [PubMed].
    [Google Scholar]
  42. Rice K.C., Mann E.E., Endres J.L., Weiss E.C., Cassat J.E., Smeltzer M.S., Bayles K.W.. ( 2007;). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104: 8113–8118 [CrossRef] [PubMed].
    [Google Scholar]
  43. Sarkar A.K., Appidi S., Ranganath A.S.. ( 2011;). Evaluation of berberine chloride as a new antibacterial agent against Gram-positive bacteria for medical textiles. Fibres & Textiles in Eastern Europe 19: 131–134.
    [Google Scholar]
  44. Smith E.C., Kaatz G.W., Seo S.M., Wareham N., Williamson E.M., Gibbons S.. ( 2007;). The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 51: 4480–4483 [CrossRef] [PubMed].
    [Google Scholar]
  45. Steinberger R.E., Holden P.A.. ( 2005;). Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71: 5404–5410 [CrossRef] [PubMed].
    [Google Scholar]
  46. Stermitz F.R., Lorenz P., Tawara J.N., Zenewicz L.A., Lewis K.. ( 2000;). Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97: 1433–1437 [CrossRef] [PubMed].
    [Google Scholar]
  47. Stewart P.S., Franklin M.J.. ( 2008;). Physiological heterogeneity in biofilms. Nat Rev Microbiol 6: 199–210 [CrossRef] [PubMed].
    [Google Scholar]
  48. Wang I.N., Deaton J., Young R.. ( 2003;). Sizing the holin lesion with an endolysin-β-galactosidase fusion. J Bacteriol 185: 779–787 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wang D., Yu L., Xiang H., Fan J., He L., Guo N., Feng H., Deng X.. ( 2008;). Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol Lett 279: 217–225 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wang X., Yao X., Zhu Z., Tang T., Dai K., Sadovskaya I., Flahaut S., Jabbouri S.. ( 2009;). Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents 34: 60–66 [CrossRef] [PubMed].
    [Google Scholar]
  51. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S.. ( 2002;). Extracellular DNA required for bacterial biofilm formation. Science 295: 1487 [CrossRef] [PubMed].
    [Google Scholar]
  52. Xing M., Shen F., Liu L., Chen Z., Guo N., Wang X., Wang W., Zhang K., Wu X., other authors. ( 2012;). Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 54: 475–482 [CrossRef] [PubMed].
    [Google Scholar]
  53. Yu Y., Yi Z.B., Liang Y.Z.. ( 2007;). Validate antibacterial mode and find main bioactive components of traditional Chinese medicine Aquilegia oxysepala. Bioorg Med Chem Lett 17: 1855–1859 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000106
Loading
/content/journal/jmm/10.1099/jmm.0.000106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error