1887

Abstract

encodes a transcriptional activator, PrfA, to positively regulate the expression of virulence factors. Several mutations in PrfA (PrfA*) have been found to contribute to increased regulatory activity. Here, we describe a strain, M7, containing a PrfA*(G145S) that activates expression of virulence factors but with low pathogenicity. To study this contradictory relationship, we exchanged the genes between strains EGDe and M7 (designated EGDe-prfA and M7-prfA). The phospholipase B (PlcB) and listeriolysin O (LLO) activities were significantly upregulated in the strain EGDe-prfA (PrfA*). Constitutive activation of PrfA potentiated virulence of the pathogenic strain EGDe, shown as increased adhesion and invasion as well as enhanced cell-to-cell spread in cultured cell lines. However, the strain M7, though PrfA-activated, had significant defects in these virulence-related phenotypes and low pathogenicity in the murine infection model, as compared with EGDe or EGDe-PrfA. To further uncover the possible mechanisms, we analysed abundance and distributions of InlA, InlB, LLO and ActA proteins, all regulated by PrfA, in EGDe, M7 and their mutants. Western blotting showed that the PrfA-regulated genes of constitutively activated PrfA strains were overexpressed , while different distributions were observed. In contrast to the virulent strain EGDe-prfA, the majority of InlB in M7 was detected in the culture supernatant and not on the bacterial surface. We suppose that the low virulence of strain M7 is due to its defects in infecting host cells, possibly as a result of failed anchorage on the bacterial cells of surface proteins like InlB, a major protein involved in adhesion and invasion of pathogenic strains. Further research is warranted to address why InlB detaches from the bacterial cells of this particular strain.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000101
2015-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/8/818.html?itemId=/content/journal/jmm/10.1099/jmm.0.000101&mimeType=html&fmt=ahah

References

  1. Bavdek A. , Kostanjšek R. , Antonini V. , Lakey J.H. , Dalla Serra M. , Gilbert R.J. , Anderluh G. . ( 2012;). pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279: 126–141 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bergmann B. , Raffelsbauer D. , Kuhn M. , Goetz M. , Hom S. , Goebel W. . ( 2002;). InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol Microbiol 43: 557–570 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bierne H. , Cossart P. . ( 2002;). InlB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor. J Cell Sci 115: 3357–3367 [PubMed].
    [Google Scholar]
  4. Braun L. , Ghebrehiwet B. , Cossart P. . ( 2000;). gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes . EMBO J 19: 1458–1466 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bruno J.C. Jr , Freitag N.E. . ( 2010;). Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS One 5: e15138 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cabanes D. , Dehoux P. , Dussurget O. , Frangeul L. , Cossart P. . ( 2002;). Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol 10: 238–245 [CrossRef] [PubMed].
    [Google Scholar]
  7. Camilli A. , Tilney L.G. , Portnoy D.A. . ( 1993;). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8: 143–157 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chen J. , Jiang L. , Chen Q. , Zhao H. , Luo X. , Chen X. , Fang W. . ( 2009a;). lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii . Foodborne Pathog Dis 6: 365–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chen J. , Jiang L. , Chen X. , Luo X. , Chen Y. , Yu Y. , Tian G. , Liu D. , Fang W. . ( 2009b;). Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua . J Microbiol Biotechnol 19: 238–249 [PubMed].[CrossRef]
    [Google Scholar]
  10. Chen J. , Zhang X. , Mei L. , Jiang L. , Fang W. . ( 2009c;). Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. Foodborne Pathog Dis 6: 7–14 [CrossRef] [PubMed].
    [Google Scholar]
  11. Chen J. , Chen Q. , Jiang L. , Cheng C. , Bai F. , Wang J. , Mo F. , Fang W. . ( 2010;). Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes . BMC Microbiol 10: 97 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chen J. , Cheng C. , Xia Y. , Zhao H. , Fang C. , Shan Y. , Wu B. , Fang W. . ( 2011a;). Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 157: 3150–3161.[CrossRef]
    [Google Scholar]
  13. Chen J. , Xia Y. , Cheng C. , Fang C. , Shan Y. , Jin G. , Fang W. . ( 2011b;). Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7. J Bacteriol 193: 5019–5020 [CrossRef] [PubMed].
    [Google Scholar]
  14. Cheng C. , Chen J. , Shan Y. , Fang C. , Liu Y. , Xia Y. , Song H. , Fang W. . ( 2013;). Listeria monocytogenes ArcA contributes to acid tolerance. J Med Microbiol 62: 813–821 [CrossRef] [PubMed].
    [Google Scholar]
  15. de las Heras A. , Cain R.J. , Bielecka M.K. , Vázquez-Boland J.A. . ( 2011;). Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14: 118–127 doi:10.1016/j.mib.2011.01.005 [PubMed].[CrossRef]
    [Google Scholar]
  16. Dramsi S. , Biswas I. , Maguin E. , Braun L. , Mastroeni P. , Cossart P. . ( 1995;). Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Mol Microbiol 16: 251–261 [CrossRef] [PubMed].
    [Google Scholar]
  17. Ermolaeva S. , Karpova T. , Novella S. , Wagner M. , Scortti M. , Tartakovskii I. , Vazquez-Boland J.A. . ( 2003;). A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J Food Microbiol 82: 87–94 [CrossRef] [PubMed].
    [Google Scholar]
  18. Farber J.M. , Peterkin P.I. . ( 1991;). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476–511 [PubMed].
    [Google Scholar]
  19. Freitag N.E. , Port G.C. , Miner M.D. . ( 2009;). Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 7: 623–628 [CrossRef] [PubMed].
    [Google Scholar]
  20. Glomski I.J. , Decatur A.L. , Portnoy D.A. . ( 2003;). Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71: 6754–6765 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gracieux P. , Roche S.M. , Pardon P. , Velge P. . ( 2003;). Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid’ L. mono media. Int J Food Microbiol 83: 133–145 [CrossRef] [PubMed].
    [Google Scholar]
  22. Gray M.L. , Killinger A.H. . ( 1966;). Listeria monocytogenes and listeric infections. Bacteriol Rev 30: 309–382 [PubMed].
    [Google Scholar]
  23. Gründler T. , Quednau N. , Stump C. , Orian-Rousseau V. , Ishikawa H. , Wolburg H. , Schroten H. , Tenenbaum T. , Schwerk C. . ( 2013;). The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect 15: 291–301 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hamon M. , Bierne H. , Cossart P. . ( 2006;). Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4: 423–434 [CrossRef] [PubMed].
    [Google Scholar]
  25. Jiang L.L. , Xu J.J. , Chen N. , Shuai J.B. , Fang W.H. . ( 2006;). Virulence phenotyping and molecular characterization of a low-pathogenicity isolate of Listeria monocytogenes from cow's milk. Acta Biochim Biophys Sin (Shanghai) 38: 262–270 [CrossRef] [PubMed].
    [Google Scholar]
  26. Jiang L. , Chen J. , Xu J. , Zhang X. , Wang S. , Zhao H. , Vongxay K. , Fang W. . ( 2008;). Virulence characterization and genotypic analyses of Listeria monocytogenes isolates from food and processing environments in eastern China. Int J Food Microbiol 121: 53–59 [CrossRef] [PubMed].
    [Google Scholar]
  27. Jonquières R. , Bierne H. , Fiedler F. , Gounon P. , Cossart P. . ( 1999;). Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34: 902–914 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kreft J. , Vázquez-Boland J.A. . ( 2001;). Regulation of virulence genes in Listeria . Int J Med Microbiol 291: 145–157 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lauer P. , Hanson B. , Lemmens E.E. , Liu W. , Luckett W.S. , Leong M.L. , Allen H.E. , Skoble J. , Bahjat K.S. , other authors . ( 2008;). Constitutive activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect Immun 76: 3742–3753 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lemon K.P. , Freitag N.E. , Kolter R. . ( 2010;). The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes . J Bacteriol 192: 3969–3976 [CrossRef] [PubMed].
    [Google Scholar]
  31. Liu D. . ( 2004;). Listeria monocytogenes: comparative interpretation of mouse virulence assay. FEMS Microbiol Lett 233: 159–164 [CrossRef] [PubMed].
    [Google Scholar]
  32. Liu D. , Lawrence M.L. , Wiedmann M. , Gorski L. , Mandrell R.E. , Ainsworth A.J. , Austin F.W. . ( 2006;). Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J Clin Microbiol 44: 4229–4233 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mariscotti J.F. , Quereda J.J. , Pucciarelli M.G. . ( 2012;). Contribution of sortase A to the regulation of Listeria monocytogenes LPXTG surface proteins. Int Microbiol 15: 43–51.
    [Google Scholar]
  34. Monk I.R. , Gahan C.G. , Hill C. . ( 2008;). Tools for functional postgenomic analysis of Listeria monocytogenes . Appl Environ Microbiol 74: 3921–3934 [CrossRef] [PubMed].
    [Google Scholar]
  35. Pentecost M. , Kumaran J. , Ghosh P. , Amieva M.R. . ( 2010;). Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog 6: e1000900 [CrossRef] [PubMed].
    [Google Scholar]
  36. Ripio M.T. , Domínguez-Bernal G. , Lara M. , Suárez M. , Vázquez-Boland J.A. . ( 1997;). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes . J Bacteriol 179: 1533–1540 [PubMed].
    [Google Scholar]
  37. Scortti M. , Monzó H.J. , Lacharme-Lora L. , Lewis D.A. , Vázquez-Boland J.A. . ( 2007;). The PrfA virulence regulon. Microbes Infect 9: 1196–1207 [CrossRef] [PubMed].
    [Google Scholar]
  38. Suárez M. , González-Zorn B. , Vega Y. , Chico-Calero I. , Vázquez-Boland J.A. . ( 2001;). A role for ActA in epithelial cell invasion by Listeria monocytogenes . Cell Microbiol 3: 853–864 [CrossRef] [PubMed].
    [Google Scholar]
  39. Sun A.N. , Camilli A. , Portnoy D.A. . ( 1990;). Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58: 3770–3778 [PubMed].
    [Google Scholar]
  40. Swaminathan B. , Gerner-Smidt P. . ( 2007;). The epidemiology of human listeriosis. Microbes Infect 9: 1236–1243 [CrossRef] [PubMed].
    [Google Scholar]
  41. Vázquez-Boland J.A. , Kuhn M. , Berche P. , Chakraborty T. , Domínguez-Bernal G. , Goebel W. , González-Zorn B. , Wehland J. , Kreft J. . ( 2001;). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584–640 [CrossRef] [PubMed].
    [Google Scholar]
  42. Vega Y. , Rauch M. , Banfield M.J. , Ermolaeva S. , Scortti M. , Goebel W. , Vázquez-Boland J.A. . ( 2004;). New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol Microbiol 52: 1553–1565 [CrossRef] [PubMed].
    [Google Scholar]
  43. Velge P. , Roche S.M. . ( 2010;). Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence?. Future Microbiol 5: 1799–1821 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wong K.K. , Freitag N.E. . ( 2004;). A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J Bacteriol 186: 6265–6276 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000101
Loading
/content/journal/jmm/10.1099/jmm.0.000101
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error