1887

Abstract

is an emerging nosocomial pathogen involved in a variety of infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteraemia. has become resistant to most of the commonly used antibiotics and multidrug-resistant isolates are becoming a severe problem in the healthcare setting. In the past few years, whole-genome sequences of >200 isolates have been generated. Several methods and molecular tools have been used for genetic manipulation of various spp. Here, we review recent developments of various genetic tools used for modification of the genome, including various ways to inactivate gene function, chromosomal integration and transposon mutagenesis

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000081
2015-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/7/657.html?itemId=/content/journal/jmm/10.1099/jmm.0.000081&mimeType=html&fmt=ahah

References

  1. Adams M.D. , Goglin K. , Molyneaux N. , Hujer K.M. , Lavender H. , Jamison J.J. , MacDonald I.J. , Martin K.M. , Russo T. , other authors . ( 2008;). Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii . J Bacteriol 190: 8053–8064 [CrossRef] [PubMed].
    [Google Scholar]
  2. Amin I.M. , Richmond G.E. , Sen P. , Koh T.H. , Piddock L.J. , Chua K.L. . ( 2013;). A method for generating marker-less gene deletions in multidrug-resistant Acinetobacter baumannii . BMC Microbiol 13: 158 [CrossRef] [PubMed].
    [Google Scholar]
  3. Antunes L.C. , Imperi F. , Carattoli A. , Visca P. . ( 2011;). Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 6: e22674 [CrossRef] [PubMed].
    [Google Scholar]
  4. Aranda J. , Poza M. , Pardo B.G. , Rumbo S. , Rumbo C. , Parreira J.R. , Rodríguez-Velo P. , Bou G. . ( 2010;). A rapid and simple method for constructing stable mutants of Acinetobacter baumannii . BMC Microbiol 10: 279 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bahl C.D. , Hvorecny K.L. , Bridges A.A. , Ballok A.E. , Bomberger J.M. , Cady K.C. , O'Toole G.A. , Madden D.R. . ( 2014;). Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity. J Biol Chem 289: 7460–7469 [CrossRef] [PubMed].
    [Google Scholar]
  6. Banerjee A. , Biswas I. . ( 2008;). Markerless multiple-gene-deletion system for Streptococcus mutans . Appl Environ Microbiol 74: 2037–2042 [CrossRef] [PubMed].
    [Google Scholar]
  7. Biswas I. , Gruss A. , Ehrlich S.D. , Maguin E. . ( 1993;). High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol 175: 3628–3635 [PubMed].
    [Google Scholar]
  8. Bryksin A.V. , Matsumura I. . ( 2010;). Rational design of a plasmid origin that replicates efficiently in both Gram-positive and Gram-negative bacteria. PLoS One 5: e13244 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cameron D.E. , Urbach J.M. , Mekalanos J.J. . ( 2008;). A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae . Proc Natl Acad Sci U S A 105: 8736–8741 [CrossRef] [PubMed].
    [Google Scholar]
  10. Campbell A. . ( 2007;). Phage integration and chromosome structure. A personal history. Annu Rev Genet 41: 1–11 [CrossRef] [PubMed].
    [Google Scholar]
  11. Carruthers M.D. , Nicholson P.A. , Tracy E.N. , Munson R.S. Jr . ( 2013;). Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 8: e59388 [CrossRef] [PubMed].
    [Google Scholar]
  12. Cerqueira G.M. , Kostoulias X. , Khoo C. , Aibinu I. , Qu Y. , Traven A. , Peleg A.Y. . ( 2014;). A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J Infect Dis 210: 46–55 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chen C.C. , Lin Y.C. , Sheng W.H. , Chen Y.C. , Chang S.C. , Hsia K.C. , Liao M.H. , Li S.Y. . ( 2011;). Genome sequence of a dominant, multidrug-resistant Acinetobacter baumannii strain, TCDC-AB0715. J Bacteriol 193: 2361–2362 [CrossRef] [PubMed].
    [Google Scholar]
  14. Chiang S.L. , Rubin E.J. . ( 2002;). Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296: 179–185 [CrossRef] [PubMed].
    [Google Scholar]
  15. Choi K.H. , Schweizer H.P. . ( 2006;). mini-Tn7 insertion in bacteria with secondary, non-glmS-linked attTn7 sites: example Proteus mirabilis HI4320. Nat Protoc 1: 170–178 [CrossRef] [PubMed].
    [Google Scholar]
  16. Choi K.H. , Gaynor J.B. , White K.G. , Lopez C. , Bosio C.M. , Karkhoff-Schweizer R.R. , Schweizer H.P. . ( 2005;). A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2: 443–448 [CrossRef] [PubMed].
    [Google Scholar]
  17. Clemmer K.M. , Bonomo R.A. , Rather P.N. . ( 2011;). Genetic analysis of surface motility in Acinetobacter baumannii . Microbiology 157: 2534–2544 [CrossRef] [PubMed].
    [Google Scholar]
  18. Davison J. . ( 2002;). Genetic tools for pseudomonads, rhizobia, and other Gram-negative bacteria. Biotechniques 32: 386–388 [PubMed].
    [Google Scholar]
  19. de Vries J. , Wackernagel W. . ( 2002;). Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 99: 2094–2099 [CrossRef] [PubMed].
    [Google Scholar]
  20. Dijkshoorn L. , Nemec A. , Seifert H. . ( 2007;). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii . Nat Rev Microbiol 5: 939–951 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ditta G. , Stanfield S. , Corbin D. , Helinski D.R. . ( 1980;). Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A 77: 7347–7351 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ditta G. , Schmidhauser T. , Yakobson E. , Lu P. , Liang X.W. , Finlay D.R. , Guiney D. , Helinski D.R. . ( 1985;). Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153 [CrossRef] [PubMed].
    [Google Scholar]
  23. Dorsey C.W. , Tomaras A.P. , Actis L.A. . ( 2002;). Genetic and phenotypic analysis of Acinetobacter baumannii insertion derivatives generated with a transposome system. Appl Environ Microbiol 68: 6353–6360 [CrossRef] [PubMed].
    [Google Scholar]
  24. Drury L. . ( 1996;). Transformation of bacteria by electroporation. Methods Mol Biol 58: 249–256 [PubMed].
    [Google Scholar]
  25. Eijkelkamp B.A. , Hassan K.A. , Paulsen I.T. , Brown M.H. . ( 2011a;). Development of a high-throughput cloning strategy for characterization of Acinetobacter baumannii drug transporter proteins. J Mol Microbiol Biotechnol 20: 211–219 [CrossRef] [PubMed].
    [Google Scholar]
  26. Eijkelkamp B.A. , Stroeher U.H. , Hassan K.A. , Papadimitrious M.S. , Paulsen I.T. , Brown M.H. . ( 2011b;). Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett 323: 44–51 [CrossRef] [PubMed].
    [Google Scholar]
  27. Eijkelkamp B.A. , Stroeher U.H. , Hassan K.A. , Paulsen I.T. , Brown M.H. . ( 2014;). Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii . BMC Genomics 15: 1020 [CrossRef] [PubMed].
    [Google Scholar]
  28. El Karoui M. , Amundsen S.K. , Dabert P. , Gruss A. . ( 1999;). Gene replacement with linear DNA in electroporated wild-type Escherichia coli . Nucleic Acids Res 27: 1296–1299 [CrossRef] [PubMed].
    [Google Scholar]
  29. Elhosseiny N.M. , Amin M.A. , Yassin A.S. , Attia A.S. . ( 2015;). Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. Int J Med Microbiol 305: 114–123 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ely B. . ( 1985;). Vectors for transposon mutagenesis of non-enteric bacteria. Mol Gen Genet 200: 302–304 [CrossRef] [PubMed].
    [Google Scholar]
  31. Espinal P. , Seifert H. , Dijkshoorn L. , Vila J. , Roca I. . ( 2012;). Rapid and accurate identification of genomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. Clin Microbiol Infect 18: 1097–1103 [CrossRef] [PubMed].
    [Google Scholar]
  32. Figurski D.H. , Helinski D.R. . ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76: 1648–1652 [CrossRef] [PubMed].
    [Google Scholar]
  33. Fournier P.E. , Richet H. , Weinstein R.A. . ( 2006;). The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42: 692–699 [CrossRef] [PubMed].
    [Google Scholar]
  34. Gao F. , Wang Y. , Liu Y.J. , Wu X.M. , Lv X. , Gan Y.R. , Song S.D. , Huang H. . ( 2011;). Genome sequence of Acinetobacter baumannii MDR-TJ. J Bacteriol 193: 2365–2366 [CrossRef] [PubMed].
    [Google Scholar]
  35. Gayoso C.M. , Mateos J. , Méndez J.A. , Fernández-Puente P. , Rumbo C. , Tomás M. , Martínez de Ilarduya O. , Bou G. . ( 2014;). Molecular mechanisms involved in the response to desiccation stress and persistence in Acinetobacter baumannii . J Proteome Res 13: 460–476 [CrossRef] [PubMed].
    [Google Scholar]
  36. Goh H.M. , Beatson S.A. , Totsika M. , Moriel D.G. , Phan M.D. , Szubert J. , Runnegar N. , Sidjabat H.E. , Paterson D.L. , other authors . ( 2013;). Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl Environ Microbiol 79: 6535–6543 [CrossRef] [PubMed].
    [Google Scholar]
  37. Gohl O. , Friedrich A. , Hoppert M. , Averhoff B. . ( 2006;). The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72: 1394–1401 [CrossRef] [PubMed].
    [Google Scholar]
  38. Goodman A.L. , McNulty N.P. , Zhao Y. , Leip D. , Mitra R.D. , Lozupone C.A. , Knight R. , Gordon J.I. . ( 2009;). Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279–289 [CrossRef] [PubMed].
    [Google Scholar]
  39. Gordon N.C. , Wareham D.W. . ( 2010;). Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents 35: 219–226 [CrossRef] [PubMed].
    [Google Scholar]
  40. Goryshin I.Y. , Jendrisak J. , Hoffman L.M. , Meis R. , Reznikoff W.S. . ( 2000;). Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18: 97–100 [CrossRef] [PubMed].
    [Google Scholar]
  41. Hamad M.A. , Zajdowicz S.L. , Holmes R.K. , Voskuil M.I. . ( 2009;). An allelic exchange system for compliant genetic manipulation of the select agents Burkholderia pseudomallei Burkholderia mallei . Gene 430: 123–131 [CrossRef] [PubMed].
    [Google Scholar]
  42. Hamilton C.M. , Lee H. , Li P.L. , Cook D.M. , Piper K.R. , von Bodman S.B. , Lanka E. , Ream W. , Farrand S.K. . ( 2000;). TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182: 1541–1548 [CrossRef] [PubMed].
    [Google Scholar]
  43. Harding C.M. , Tracy E.N. , Carruthers M.D. , Rather P.N. , Actis L.A. , Munson R.S. Jr . ( 2013;). Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. MBio 4: e00360-13 [CrossRef] [PubMed].
    [Google Scholar]
  44. Harding C.M. , Nasr M.A. , Kinsella R.L. , Scott N.E. , Foster L.J. , Weber B.S. , Fiester S.E. , Actis L.A. , Tracy E.N. , other authors . ( 2015;). Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol Microbiol 96: 1023–1041 [CrossRef] [Epub ahead of print]. [CrossRef] [PubMed].
    [Google Scholar]
  45. Héritier C. , Poirel L. , Lambert T. , Nordmann P. . ( 2005;). Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii . Antimicrob Agents Chemother 49: 3198–3202 [CrossRef] [PubMed].
    [Google Scholar]
  46. Howard A. , O'Donoghue M. , Feeney A. , Sleator R.D. . ( 2012;). Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3: 243–250 [CrossRef] [PubMed].
    [Google Scholar]
  47. Hu S. , Fu J. , Huang F. , Ding X. , Stewart A.F. , Xia L. , Zhang Y. . ( 2014;). Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl Microbiol Biotechnol 98: 2165–2172 [CrossRef] [PubMed].
    [Google Scholar]
  48. Iacono M. , Villa L. , Fortini D. , Bordoni R. , Imperi F. , Bonnal R.J. , Sicheritz-Ponten T. , De Bellis G. , Visca P. , other authors . ( 2008;). Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 52: 2616–2625 [CrossRef] [PubMed].
    [Google Scholar]
  49. Imperi F. , Antunes L.C. , Blom J. , Villa L. , Iacono M. , Visca P. , Carattoli A. . ( 2011;). The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. IUBMB Life 63: 1068–1074 [CrossRef] [PubMed].
    [Google Scholar]
  50. Jacobs M.A. , Alwood A. , Thaipisuttikul I. , Spencer D. , Haugen E. , Ernst S. , Will O. , Kaul R. , Raymond C. , other authors . ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100: 14339–14344 [CrossRef] [PubMed].
    [Google Scholar]
  51. Jacobs A.C. , Hood I. , Boyd K.L. , Olson P.D. , Morrison J.M. , Carson S. , Sayood K. , Iwen P.C. , Skaar E.P. , Dunman P.M. . ( 2010;). Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 78: 1952–1962 [CrossRef] [PubMed].
    [Google Scholar]
  52. Jacobs A.C. , Blanchard C.E. , Catherman S.C. , Dunman P.M. , Murata Y. . ( 2014a;). An ribonuclease tbl2 family protein modulates Acinetobacter baumannii abiotic surface colonization. PLoS One 9: e85729 [CrossRef] [PubMed].
    [Google Scholar]
  53. Jacobs A.C. , Thompson M.G. , Gebhardt M. , Corey B.W. , Yildirim S. , Shuman H.A. , Zurawski D.V. . ( 2014b;). Genetic manipulation of Acinetobacter baumannii . Curr Protoc Microbiol 35: 6G21–6G211 [PubMed].[CrossRef]
    [Google Scholar]
  54. Jacobs A.C. , Thompson M.G. , Black C.C. , Kessler J.L. , Clark L.P. , McQueary C.N. , Gancz H.Y. , Corey B.W. , Moon J.K. , other authors . ( 2014c;). AB5075, a highly virulent isolate of Acinetobacter baumannii, as a model strain for the evaluation of pathogenesis and antimicrobial treatments. MBio 5: e01076-14 [CrossRef] [PubMed].
    [Google Scholar]
  55. Jawad A. , Seifert H. , Snelling A.M. , Heritage J. , Hawkey P.M. . ( 1998;). Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 36: 1938–1941 [PubMed].
    [Google Scholar]
  56. Judson N. , Mekalanos J.J. . ( 2000;). TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 18: 740–745 [CrossRef] [PubMed].
    [Google Scholar]
  57. Kaliterna V. , Goic-Barisic I. . ( 2013;). The ability of biofilm formation in clinical isolates of Acinetobacter baumannii belonging to two different European clones causing outbreaks in the Split University Hospital, Croatia. J Chemother 25: 60–62 [CrossRef] [PubMed].
    [Google Scholar]
  58. Kickstein E. , Harms K. , Wackernagel W. . ( 2007;). Deletions of recBCD or recD influence genetic transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi . Microbiology 153: 2259–2270 [CrossRef] [PubMed].
    [Google Scholar]
  59. Kumar A. , Dalton C. , Cortez-Cordova J. , Schweizer H.P. . ( 2010;). Mini-Tn7 vectors as genetic tools for single copy gene cloning in Acinetobacter baumannii . J Microbiol Methods 82: 296–300 [CrossRef] [PubMed].
    [Google Scholar]
  60. Leahy J.G. , Jones-Meehan J.M. , Pullias E.L. , Colwell R.R. . ( 1993;). Transposon mutagenesis in Acinetobacter calcoaceticus RAG-1. J Bacteriol 175: 1838–1840 [PubMed].
    [Google Scholar]
  61. Lessl M. , Balzer D. , Lurz R. , Waters V.L. , Guiney D.G. , Lanka E. . ( 1992;). Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans . J Bacteriol 174: 2493–2500 [PubMed].
    [Google Scholar]
  62. Liberati N.T. , Urbach J.M. , Miyata S. , Lee D.G. , Drenkard E. , Wu G. , Villanueva J. , Wei T. , Ausubel F.M. . ( 2006;). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103: 2833–2838 [CrossRef] [PubMed].
    [Google Scholar]
  63. Longo F. , Vuotto C. , Donelli G. . ( 2014;). Biofilm formation in Acinetobacter baumannii . New Microbiol 37: 119–127 [PubMed].
    [Google Scholar]
  64. Marchaim D. , Navon-Venezia S. , Schwartz D. , Tarabeia J. , Fefer I. , Schwaber M.J. , Carmeli Y. . ( 2007;). Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii . J Clin Microbiol 45: 1551–1555 [CrossRef] [PubMed].
    [Google Scholar]
  65. Marti S. , Nait Chabane Y. , Alexandre S. , Coquet L. , Vila J. , Jouenne T. , E. . ( 2011;). Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS One 6: e26030 [CrossRef] [PubMed].
    [Google Scholar]
  66. Martínez-García E. , Calles B. , Arévalo-Rodríguez M. , de Lorenzo V. . ( 2011;). pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11: 38 [CrossRef] [PubMed].
    [Google Scholar]
  67. Marx C.J. , Lidstrom M.E. . ( 2002;). Broad-host-range crelox system for antibiotic marker recycling in Gram-negative bacteria. Biotechniques 33: 1062–1067 [PubMed].
    [Google Scholar]
  68. McConnell M.J. , Actis L. , Pachón J. . ( 2013;). Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37: 130–155 [PubMed].[CrossRef]
    [Google Scholar]
  69. McQueary C.N. , Actis L.A. . ( 2011;). Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties. J Microbiol 49: 243–250 [CrossRef] [PubMed].
    [Google Scholar]
  70. Metzgar D. , Bacher J.M. , Pezo V. , Reader J. , Döring V. , Schimmel P. , Marlière P. , de Crécy-Lagard V. . ( 2004;). Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32: 5780–5790 [CrossRef] [PubMed].
    [Google Scholar]
  71. Miller J.F. . ( 1994;). Bacterial transformation by electroporation. Methods Enzymol 235: 375–385 [CrossRef] [PubMed].
    [Google Scholar]
  72. Miller J.F. , Dower W.J. , Tompkins L.S. . ( 1988;). High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A 85: 856–860 [CrossRef] [PubMed].
    [Google Scholar]
  73. Murin C.D. , Segal K. , Bryksin A. , Matsumura I. . ( 2012;). Expression vectors for Acinetobacter baylyi ADP1. Appl Environ Microbiol 78: 280–283 [CrossRef] [PubMed].
    [Google Scholar]
  74. Murray N.E. . ( 2006;). The impact of phage lambda: from restriction to recombineering. Biochem Soc Trans 34: 203–207 [CrossRef] [PubMed].
    [Google Scholar]
  75. Niaudet B. , Goze A. , Ehrlich S.D. . ( 1982;). Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene 19: 277–284 [CrossRef] [PubMed].
    [Google Scholar]
  76. Nielsen K.M. , van Elsas J.D. . ( 2001;). Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp BD413 in soil. Soil Biol Biochem 33: 345–357 [CrossRef].
    [Google Scholar]
  77. Nielsen K.M. , Bones A.M. , Van Elsas J.D. . ( 1997;). Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol 63: 3972–3977 [PubMed].
    [Google Scholar]
  78. Nikel P.I. , de Lorenzo V. . ( 2013;). Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 163: 143–154 [CrossRef] [PubMed].
    [Google Scholar]
  79. Oh M.H. , Lee J.C. , Kim J. , Choi C.H. , Han K. . ( 2015;). Simple method for markerless gene deletion of multidrug-resistant Acinetobacter baumannii . Appl Environ Microbiol 81: 3357–3368 [CrossRef] [PubMed].
    [Google Scholar]
  80. Palmen R. , Vosman B. , Kok R. , van der Zee J.R. , Hellingwerf K.J. . ( 1992;). Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus . Mol Microbiol 6: 1747–1754 [CrossRef] [PubMed].
    [Google Scholar]
  81. Peleg A.Y. , Seifert H. , Paterson D.L. . ( 2008a;). Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538–582 [CrossRef] [PubMed].
    [Google Scholar]
  82. Peleg A.Y. , Tampakakis E. , Fuchs B.B. , Eliopoulos G.M. , Moellering R.C. Jr , Mylonakis E. . ( 2008b;). Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans . Proc Natl Acad Sci U S A 105: 14585–14590 [CrossRef] [PubMed].
    [Google Scholar]
  83. Phogat S. , Gupta R. , Burma P.K. , Sen K. , Pental D. . ( 2001;). On the estimation of number of events required for saturation mutagenesis of large genomes. Curr Sci 80: 823–824.
    [Google Scholar]
  84. Pomerantsev A.P. , Sitaraman R. , Galloway C.R. , Kivovich V. , Leppla S.H. . ( 2006;). Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun 74: 682–693 [CrossRef] [PubMed].
    [Google Scholar]
  85. Prax M. , Lee C.Y. , Bertram R. . ( 2013;). An update on the molecular genetics toolbox for staphylococci. Microbiology 159: 421–435 [CrossRef] [PubMed].
    [Google Scholar]
  86. Ramirez M.S. , Don M. , Merkier A.K. , Bistué A.J. , Zorreguieta A. , Centrón D. , Tolmasky M.E. . ( 2010;). Naturally competent Acinetobacter baumannii clinical isolate as a convenient model for genetic studies. J Clin Microbiol 48: 1488–1490 [CrossRef] [PubMed].
    [Google Scholar]
  87. Redder P. , Linder P. . ( 2012;). New range of vectors with a stringent 5-fluoroorotic acid-based counterselection system for generating mutants by allelic replacement in Staphylococcus aureus . Appl Environ Microbiol 78: 3846–3854 [CrossRef] [PubMed].
    [Google Scholar]
  88. Roca I. , Espinal P. , Vila-Farrés X. , Vila J. . ( 2012;). The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol 3: 148 [CrossRef] [PubMed].
    [Google Scholar]
  89. Rodríguez-Baño J. , Martí S. , Soto S. , Fernández-Cuenca F. , Cisneros J.M. , Pachón J. , Pascual A. , Martínez-Martínez L. , McQueary C. , other authors . ( 2008;). Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14: 276–278 [CrossRef] [PubMed].
    [Google Scholar]
  90. Ross-Macdonald P. , Coelho P.S. , Roemer T. , Agarwal S. , Kumar A. , Jansen R. , Cheung K.H. , Sheehan A. , Symoniatis D. , other authors . ( 1999;). Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402: 413–418 [CrossRef] [PubMed].
    [Google Scholar]
  91. Rumbo C. , Tomás M. , Fernández Moreira E. , Soares N.C. , Carvajal M. , Santillana E. , Beceiro A. , Romero A. , Bou G. . ( 2014;). The Acinetobacter baumannii Omp33–36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 82: 4666–4680 [CrossRef] [PubMed].
    [Google Scholar]
  92. Schweizer H.P. . ( 2003;). Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5: 67–77 [CrossRef] [PubMed].
    [Google Scholar]
  93. Schweizer H. . ( 2008;). Bacterial genetics: past achievements, present state of the field, and future challenges. Biotechniques 44: (Suppl), 633–641 [CrossRef] [PubMed].
    [Google Scholar]
  94. Sharan S.K. , Thomason L.C. , Kuznetsov S.G. , Court D.L. . ( 2009;). Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4: 206–223 [CrossRef] [PubMed].
    [Google Scholar]
  95. Shin J.H. , Lee H.W. , Kim S.M. , Kim J. . ( 2009;). Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode. J Microbiol 47: 728–735 [CrossRef] [PubMed].
    [Google Scholar]
  96. Shiraishi K. , Hanada K. , Iwakura Y. , Ikeda H. . ( 2002;). Roles of RecJ, RecO, and RecR in RecET-mediated illegitimate recombination in Escherichia coli . J Bacteriol 184: 4715–4721 [CrossRef] [PubMed].
    [Google Scholar]
  97. Singer J.T. , van Tuijl J.J. , Finnerty W.R. . ( 1986;). Transformation and mobilization of cloning vectors in Acinetobacter spp. J Bacteriol 165: 301–303 [PubMed].
    [Google Scholar]
  98. Skiebe E. , de Berardinis V. , Morczinek P. , Kerrinnes T. , Faber F. , Lepka D. , Hammer B. , Zimmermann O. , Ziesing S. , other authors . ( 2012;). Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302: 117–128 [CrossRef] [PubMed].
    [Google Scholar]
  99. Smith M.G. , Gianoulis T.A. , Pukatzki S. , Mekalanos J.J. , Ornston L.N. , Gerstein M. , Snyder M. . ( 2007;). New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21: 601–614 [CrossRef] [PubMed].
    [Google Scholar]
  100. Tomaras A.P. , Dorsey C.W. , Edelmann R.E. , Actis L.A. . ( 2003;). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149: 3473–3484 [CrossRef] [PubMed].
    [Google Scholar]
  101. Tucker A.T. , Nowicki E.M. , Boll J.M. , Knauf G.A. , Burdis N.C. , Trent M.S. , Davies B.W. . ( 2014;). Defining gene-phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation. MBio 5: e01313-14 [CrossRef] [PubMed].
    [Google Scholar]
  102. Umland T.C. , Schultz L.W. , MacDonald U. , Beanan J.M. , Olson R. , Russo T.A. . ( 2012;). In vivo-validated essential genes identified in Acinetobacter baumannii by using human ascites overlap poorly with essential genes detected on laboratory media. MBio 3: e00113-12 [CrossRef] [PubMed].
    [Google Scholar]
  103. Visca P. , Seifert H. , Towner K.J. . ( 2011;). Acinetobacter infection – an emerging threat to human health. IUBMB Life 63: 1048–1054 [CrossRef] [PubMed].
    [Google Scholar]
  104. Wang N. , Ozer E.A. , Mandel M.J. , Hauser A.R. . ( 2014;). Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 5: e01163-14 [CrossRef] [PubMed].
    [Google Scholar]
  105. Wendt C. , Dietze B. , Dietz E. , Rüden H. . ( 1997;). Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 35: 1394–1397 [PubMed].
    [Google Scholar]
  106. Wilharm G. , Piesker J. , Laue M. , Skiebe E. . ( 2013;). DNA uptake by the nosocomial pathogen Acinetobacter baumannii occurs during movement along wet surfaces. J Bacteriol 195: 4146–4153 [CrossRef] [PubMed].
    [Google Scholar]
  107. Wirth R. , Friesenegger A. , Fiedler S. . ( 1989;). Transformation of various species of Gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216: 175–177 [CrossRef] [PubMed].
    [Google Scholar]
  108. Zaman M.M. , Boles T.C. . ( 1996;). Plasmid recombination by the RecBCD pathway of Escherichia coli . J Bacteriol 178: 3840–3845 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000081
Loading
/content/journal/jmm/10.1099/jmm.0.000081
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error