1887

Abstract

The increasing emergence of multidrug-resistant constitutes a worldwide threat in hospital settings. Efflux-mediated resistance, particularly the resistance-nodulation-division (RND)-type efflux pumps, contributes significantly to decreased susceptibility to multiple antibiotics when overexpressed. Using PCR-based detection, the prevalence of genes encoding the RND efflux pumps AdeB, AdeJ and AdeG was investigated amongst 144 epidemiologically characterized and geographically diverse isolates of worldwide origin, representing International Clones 1–8 and genotypically unique isolates. Furthermore, five putative RND-type efflux genes identified via an approach were included. Five of the eight investigated efflux pump genes were present in all isolates, including and ; the prevalence of the others varied between 65 and 97 %. No association between the presence of one or multiple pumps to a specific clonal lineage was detected. The high prevalence of the efflux pump genes supports a fixed function of each individual pump that is not yet fully understood.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000069
2015-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/6/630.html?itemId=/content/journal/jmm/10.1099/jmm.0.000069&mimeType=html&fmt=ahah

References

  1. Bratu S., Landman D., Martin D. A., Georgescu C., Quale J. 2008; Correlation of antimicrobial resistance with beta-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob Agents Chemother 52:2999–3005 [CrossRef]
    [Google Scholar]
  2. Chu Y. W., Chau S. L., Houang E. T. 2006; Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 55:477–478 [CrossRef]
    [Google Scholar]
  3. Coyne S., Rosenfeld N., Lambert T., Courvalin P., Périchon B. 2010; Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii . Antimicrob Agents Chemother 54:4389–4393 [CrossRef]
    [Google Scholar]
  4. Coyne S., Courvalin P., Périchon B. 2011; Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953 [CrossRef]
    [Google Scholar]
  5. Damier-Piolle L., Magnet S., Brémont S., Lambert T., Courvalin P. 2008; AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii . Antimicrob Agents Chemother 52:557–562 [CrossRef]
    [Google Scholar]
  6. Dijkshoorn L., Nemec A., Seifert H. 2007; An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii . Nat Rev Microbiol 5:939–951 [CrossRef]
    [Google Scholar]
  7. Fernando D., Kumar A. 2012; Growth phase-dependent expression of RND efflux pump- and outer membrane porin-encoding genes in Acinetobacter baumannii ATCC 19606. J Antimicrob Chemother 67:569–572 [CrossRef]
    [Google Scholar]
  8. Fetar H., Gilmour C., Klinoski R., Daigle D. M., Dean C. R., Poole K. 2011; mexEFoprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514 [CrossRef]
    [Google Scholar]
  9. Fraud S., Poole K. 2011; Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa . Antimicrob Agents Chemother 55:1068–1074 [CrossRef]
    [Google Scholar]
  10. Fraud S., Campigotto A. J., Chen Z., Poole K. 2008; MexCD–OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52:4478–4482 [CrossRef]
    [Google Scholar]
  11. Halstead D. C., Abid J., Dowzicky M. J. 2007; Antimicrobial susceptibility among Acinetobacter calcoaceticusbaumannii complex and Enterobacteriaceae collected as part of the Tigecycline Evaluation and Surveillance Trial. J Infect 55:49–57 [CrossRef]
    [Google Scholar]
  12. Helling R. B., Janes B. K., Kimball H., Tran T., Bundesmann M., Check P., Phelan D., Miller C. 2002; Toxic waste disposal in Escherichia coli . J Bacteriol 184:3699–3703 [CrossRef]
    [Google Scholar]
  13. Higgins P. G., Schneiders T., Hamprecht A., Seifert H. 2010a; In vivo selection of a missense mutation in adeR and conversion of the novel bla OXA-164 gene into bla OXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. Antimicrob Agents Chemother 54:5021–5027 [CrossRef]
    [Google Scholar]
  14. Higgins P. G., Dammhayn C., Hackel M., Seifert H. 2010b; Global spread of carbapenem-resistant Acinetobacter baumannii . J Antimicrob Chemother 65:233–238 [CrossRef]
    [Google Scholar]
  15. Huys G., Cnockaert M., Nemec A., Swings J. 2005a; Sequence-based typing of adeB as a potential tool to identify intraspecific groups among clinical strains of multidrug-resistant Acinetobacter baumannii . J Clin Microbiol 43:5327–5331 [CrossRef]
    [Google Scholar]
  16. Huys G., Cnockaert M., Vaneechoutte M., Woodford N., Nemec A., Dijkshoorn L., Swings J. 2005b; Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals. Res Microbiol 156:348–355 [CrossRef]
    [Google Scholar]
  17. Lan R., Reeves P. R. 2000; Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401 [CrossRef]
    [Google Scholar]
  18. Lin L., Ling B. D., Li X. Z. 2009; Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumanniiAcinetobacter calcoaceticus complex. Int J Antimicrob Agents 33:27–32 [CrossRef]
    [Google Scholar]
  19. Luo L., Jiang X., Wu Q., Wei L., Li J., Ying C. 2011; Efflux pump overexpression in conjunction with alternation of outer membrane protein may induce Acinetobacter baumannii resistant to imipenem. Chemotherapy 57:77–84 [CrossRef]
    [Google Scholar]
  20. Magnet S., Courvalin P., Lambert T. 2001; Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380 [CrossRef]
    [Google Scholar]
  21. Montero A., Ariza J., Corbella X., Doménech A., Cabellos C., Ayats J., Tubau F., Borraz C., Gudiol F. 2004; Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother 54:1085–1091 [CrossRef]
    [Google Scholar]
  22. Munoz-Price L. S., Weinstein R. A. 2008; Acinetobacter infection. N Engl J Med 358:1271–1281 [CrossRef]
    [Google Scholar]
  23. Nemec A., Maixnerová M., van der Reijden T. J., van den Broek P. J., Dijkshoorn L. 2007; Relationship between the AdeABC efflux system gene content, netilmicin susceptibility and multidrug resistance in a genotypically diverse collection of Acinetobacter baumannii strains. J Antimicrob Chemother 60:483–489 [CrossRef]
    [Google Scholar]
  24. Peleg A. Y., Seifert H., Paterson D. L. 2008; Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582 [CrossRef]
    [Google Scholar]
  25. Piddock L. J. 2006; Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402 [CrossRef]
    [Google Scholar]
  26. Tseng T. T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H. Jr 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125
    [Google Scholar]
  27. Villegas M. V., Hartstein A. I. 2003; Acinetobacter outbreaks, 1977–2000. Infect Control Hosp Epidemiol 24:284–295 [CrossRef]
    [Google Scholar]
  28. Zgurskaya H. I., Nikaido H. 2000; Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000069
Loading
/content/journal/jmm/10.1099/jmm.0.000069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error