1887

Abstract

() may enter into host cells, maybe as a facultative intracellular pathogen. This study aims to reveal the roles of internalized in the bacterial pathopoiesis. Transmission electron microscopy was used to observe the invasion of . Invasion rates of (two standard strains and 43 clinical strains) were examined by gentamicin invasion assay. The , and genes of were detected by PCR. The 3′region (-EPIYA) of each strain was sequenced. The secretion of IL-8 from AGS cells and activity of NF-κB induced by intracellular were tested by ELISA and the dual-luciferase reporter assay system, respectively. It was found that could adhere to and invade AGS cells, then continue to survive and multiply in the cytoplasm. The average invasion rate of gastric cancer plants and that of ulcer plants were both higher than that of gastritis plants (≈0.0001). In the clinical strains, , and were all positive; -EPIYA genotypes included ABD 90.7 % (39/43) and ABBD 9.3 % (4/43), all without comparability. Notably, the average invasion rate of s1c-i1-m1b plants was higher than that of s1c-i1-m2 plants ( = 0.0445). In addition, the intracellular all could induce IL-8 secretion, which was decreased after cells were pretreated with anti-β1-integrin antibody or SN-50 (an NF-κB inhibitor). The intracellular all activated NF-κB, which would be inhibited after cells were pretreated with anti-β1-integrin antibody. These results demonstrate that invasive ability and disease severity have a positive correlation, and this intension of invasive ability is associated with the mid-region, not with , -EPIYA or . It is possible that and are essential for the bacterial invasion. Internalized can activate NF-κB signal pathway and induce IL-8 secretion, which suggests that invasion may be an important strategy to play a role in the development of associated diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000049
2015-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/5/498.html?itemId=/content/journal/jmm/10.1099/jmm.0.000049&mimeType=html&fmt=ahah

References

  1. Allison C. C., Kufer T. A., Kremmer E., Kaparakis M., Ferrero R. L.. ( 2009; ). Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. . J Immunol 183:, 8099–8109. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amieva M. R., Salama N. R., Tompkins L. S., Falkow S.. ( 2002; ). Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. . Cell Microbiol 4:, 677–690. [CrossRef] [PubMed]
    [Google Scholar]
  3. Atherton J. C., Peek R. M. Jr, Tham K. T., Cover T. L., Blaser M. J.. ( 1997; ). Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori.. Gastroenterology 112:, 92–99. [CrossRef] [PubMed]
    [Google Scholar]
  4. Backert S., Naumann M.. ( 2010; ). What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori.. Trends Microbiol 18:, 479–486. [CrossRef] [PubMed]
    [Google Scholar]
  5. Backert S., Tegtmeyer N., Selbach M.. ( 2010; ). The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. . Helicobacter 15:, 163–176. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chu Y. T., Wang Y. H., Wu J. J., Lei H. Y.. ( 2010; ). Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. . Infect Immun 78:, 4157–4165. [CrossRef] [PubMed]
    [Google Scholar]
  7. Coray D. S., Heinemann J. A., Tyrer P. C., Keenan J. I.. ( 2012; ). Human lactoferrin increases Helicobacter pylori internalisation into AGS cells. . World J Microbiol Biotechnol 28:, 1871–1880. [CrossRef] [PubMed]
    [Google Scholar]
  8. Crabtree J. E., Wyatt J. I., Trejdosiewicz L. K., Peichl P., Nichols P. H., Ramsay N., Primrose J. N., Lindley I. J.. ( 1994; ). Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. . J Clin Pathol 47:, 61–66. [CrossRef] [PubMed]
    [Google Scholar]
  9. Crowe S. E., Alvarez L., Dytoc M., Hunt R. H., Muller M., Sherman P., Patel J., Jin Y., Ernst P. B.. ( 1995; ). Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. . Gastroenterology 108:, 65–74. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dubois A., Borén T.. ( 2007; ). Helicobacter pylori is invasive and it may be a facultative intracellular organism. . Cell Microbiol 9:, 1108–1116. [CrossRef] [PubMed]
    [Google Scholar]
  11. Eftang L. L., Esbensen Y., Tannæs T. M., Bukholm I. R., Bukholm G.. ( 2012; ). Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. . BMC Microbiol 12:, 9. [CrossRef] [PubMed]
    [Google Scholar]
  12. el-Shoura S. M.. ( 1995; ). Helicobacter pylori: I. Ultrastructural sequences of adherence, attachment, and penetration into the gastric mucosa. . Ultrastruct Pathol 19:, 323–333. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fischer W.. ( 2011; ). Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. . FEBS J 278:, 1203–1212. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fischer W., Püls J., Buhrdorf R., Gebert B., Odenbreit S., Haas R.. ( 2001; ). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. . Mol Microbiol 42:, 1337–1348. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ito K., Yamaoka Y., Ota H., El-Zimaity H., Graham D. Y.. ( 2008; ). Adherence, internalization, and persistence of Helicobacter pylori in hepatocytes. . Dig Dis Sci 53:, 2541–2549. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kalali B., Mejías-Luque R., Javaheri A., Gerhard M.. ( 2014; ). H. pylori virulence factors: influence on immune system and pathology. . Mediators Inflamm 2014:, 426309. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kauser F., Hussain M. A., Ahmed I., Ahmad N., Habeeb A., Khan A. A., Ahmed N.. ( 2005; ). Comparing genomes of Helicobacter pylori strains from the high-altitude desert of Ladakh, India. . J Clin Microbiol 43:, 1538–1545. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kwok T., Backert S., Schwarz H., Berger J., Meyer T. F.. ( 2002; ). Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. . Infect Immun 70:, 2108–2120. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lai C. H., Chang Y. C., Du S. Y., Wang H. J., Kuo C. H., Fang S. H., Fu H. W., Lin H. H., Chiang A. S., Wang W. C.. ( 2008; ). Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. . Infect Immun 76:, 3293–3303. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lamb A., Chen L. F.. ( 2013; ). Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. . J Cell Biochem 114:, 491–497. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lee K. E., Khoi P. N., Xia Y., Park J. S., Joo Y. E., Kim K. K., Choi S. Y., Jung Y. D.. ( 2013; ). Helicobacter pylori and interleukin-8 in gastric cancer. . World J Gastroenterol 19:, 8192–8202. [CrossRef] [PubMed]
    [Google Scholar]
  22. Matsumoto Y., Marusawa H., Kinoshita K., Endo Y., Kou T., Morisawa T., Azuma T., Okazaki I. M., Honjo T., Chiba T.. ( 2007; ). Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. . Nat Med 13:, 470–476. [CrossRef] [PubMed]
    [Google Scholar]
  23. Necchi V., Candusso M. E., Tava F., Luinetti O., Ventura U., Fiocca R., Ricci V., Solcia E.. ( 2007; ). Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori.. Gastroenterology 132:, 1009–1023. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ohnishi N., Yuasa H., Tanaka S., Sawa H., Miura M., Matsui A., Higashi H., Musashi M., Iwabuchi K. et al. ( 2008; ). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. . Proc Natl Acad Sci U S A 105:, 1003–1008. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ozbek A., Ozbek E., Dursun H., Kalkan Y., Demirci T.. ( 2010; ). Can Helicobacter pylori invade human gastric mucosa?: an in vivo study using electron microscopy, immunohistochemical methods, and real-time polymerase chain reaction. . J Clin Gastroenterol 44:, 416–422.[PubMed]
    [Google Scholar]
  26. Peek R. M. Jr, Blaser M. J.. ( 2002; ). Helicobacter pylori and gastrointestinal tract adenocarcinomas. . Nat Rev Cancer 2:, 28–37. [CrossRef] [PubMed]
    [Google Scholar]
  27. Petersen A. M., Sørensen K., Blom J., Krogfelt K. A.. ( 2001; ). Reduced intracellular survival of Helicobacter pylori vacA mutants in comparison with their wild-types indicates the role of VacA in pathogenesis. . FEMS Immunol Med Microbiol 30:, 103–108. [CrossRef] [PubMed]
    [Google Scholar]
  28. Posselt G., Backert S., Wessler S.. ( 2013; ). The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. . Cell Commun Signal 11:, 77. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rhead J. L., Letley D. P., Mohammadi M., Hussein N., Mohagheghi M. A., Eshagh Hosseini M., Atherton J. C.. ( 2007; ). A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. . Gastroenterology 133:, 926–936. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rizzato C., Torres J., Plummer M., Muñoz N., Franceschi S., Camorlinga-Ponce M., Fuentes-Pananá E. M., Canzian F., Kato I.. ( 2012; ). Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. . PLoS ONE 7:, e29605. [CrossRef] [PubMed]
    [Google Scholar]
  31. Semino-Mora C., Doi S. Q., Marty A., Simko V., Carlstedt I., Dubois A.. ( 2003; ). Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. . J Infect Dis 187:, 1165–1177. [CrossRef] [PubMed]
    [Google Scholar]
  32. Su B., Johansson S., Fällman M., Patarroyo M., Granström M., Normark S.. ( 1999; ). Signal transduction-mediated adherence and entry of Helicobacter pylori into cultured cells. . Gastroenterology 117:, 595–604. [CrossRef] [PubMed]
    [Google Scholar]
  33. Terebiznik M. R., Vazquez C. L., Torbicki K., Banks D., Wang T., Hong W., Blanke S. R., Colombo M. I., Jones N. L.. ( 2006; ). Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. . Infect Immun 74:, 6599–6614. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wilkinson S. M., Uhl J. R., Kline B. C., Cockerill F. R. III. ( 1998; ). Assessment of invasion frequencies of cultured HEp-2 cells by clinical isolates of Helicobacter pylori using an acridine orange assay. . J Clin Pathol 51:, 127–133. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yamaoka Y., Kodama T., Kashima K., Graham D. Y., Sepulveda A. R.. ( 1998; ). Variants of the 3′ region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. . J Clin Microbiol 36:, 2258–2263.[PubMed]
    [Google Scholar]
  36. Yamazaki S., Yamakawa A., Okuda T., Ohtani M., Suto H., Ito Y., Yamazaki Y., Keida Y., Higashi H. et al. ( 2005; ). Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. . J Clin Microbiol 43:, 3906–3916. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000049
Loading
/content/journal/jmm/10.1099/jmm.0.000049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error