Characterization of bacteriophages used in the serovar Enteritidis phage-typing scheme Free

Abstract

The 16 serovar Enteritidis (. Enteritidis) typing phages (SETPs) used in the Laboratory of Enteric Pathogens (Health Protection Agency, London, UK) phage-typing scheme have not previously been characterized in detail. We have examined the adsorption properties of the phages with respect to a number of serovars and defined phage morphology with electron microscopy. PFGE was used to estimate overall genome size and banding patterns generated by electrophoresis following restriction endonuclease digestion of the genome with dIII were compared. PCR amplification and sequencing of selected genes was performed. The 16 phages comprise three morphotypes, (SETP1, 8, 10, 14, 15 and 16), (SETP3, 5, 7, 11, 12 and 13) and (SETP2, 4, 6 and 9). All and , but not adsorbed to the O12 lipopolysaccharide antigen of serogroups B (4,12) and D (9,12). The genome sizes for the and (PFGE-A) were approximately 42 kb. The genome size for SETP2, 4 and 9 was 36.5 kb, and for myovirus SETP6 was 27 kb. dIII digestion of phage DNA produced 9 distinct patterns of 8 to 11 bands. Relationships between phages based on digest patterns were consistent with those defined by morphology. The had homologues of several P22 genes while the had homologues of several genes present in the sequenced siphovirus SETP3 (EF177456). This study represents an initial step in characterizing the molecular basis that underlies the widely used . Enteritidis typing scheme.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000034-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/1/86.html?itemId=/content/journal/jmm/10.1099/jmm.0.000034-0&mimeType=html&fmt=ahah

References

  1. Baggesen D. L., Wegener H. C., Madsen M. 1997; Correlation of conversion of Salmonella enterica serovar Enteritidis phage type 1, 4, or 6 to phage type 7 with loss of lipopolysaccharide. J Clin Microbiol 35:330–333
    [Google Scholar]
  2. Fortier L. C., Bouchard J. D., Moineau S. 2005; Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK. J Bacteriol 187:3721–3730 [CrossRef]
    [Google Scholar]
  3. Frost J. A., Ward L. R., Rowe B. 1989; Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24. Epidemiol Infect 103:243–248 [CrossRef]
    [Google Scholar]
  4. Guard-Petter J. 1999; Phage type and other outer-membrane characteristics of Salmonella enterica serovar Enteritidis associated with virulence. In Salmonella Enterica Serovar Enteritidis in Humans and Animals vol 1 pp 221–232 Ames, IA: Iowa State University Press;
    [Google Scholar]
  5. Mmolawa P. T., Schmieger H., Tucker C. P., Heuzenroeder M. W. 2003; Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J Bacteriol 185:3473–3475 [CrossRef]
    [Google Scholar]
  6. Porwollik S., Santiviago C. A., Cheng P., Florea L., McClelland M. 2005; Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J Bacteriol 187:6545–6555 [CrossRef]
    [Google Scholar]
  7. Raes M., Ward L. R., Maas H. M. E., Van Leeuwen W. J., Henken A. M. 2000; Test Results of Salmonella Sero- and Phage Typing by the National Reference Laboratories and the EnterNet Laboratories in the Member States of the European Union. Collaborative Study IV on Sero- and Phage Typing . Rijksinstituut voor Volksgezondheid en Milieu report 284500 013 http://rivm.openrepository.com/rivm/bitstream/10029/9440/1/284500013.pdf http://hdl.handle.net/10029/9440
    [Google Scholar]
  8. Rankin S., Platt D. J. 1995; Phage conversion in Salmonella enterica serotype Enteritidis: implications for epidemiology. Epidemiol Infect 114:227–236 [CrossRef]
    [Google Scholar]
  9. Ribot E. M., Fair M. A., Gautom R., Cameron D. N., Hunter S. B., Swaminathan B., Barrett T. J. 2006; Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157 : H7, Salmonella , and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67 [CrossRef]
    [Google Scholar]
  10. Ridley A. M., Punia P., Ward L. R., Rowe B., Threlfall E. J. 1996; Plasmid characterization and pulsed-field electrophoretic analysis demonstrate that ampicillin-resistant strains of Salmonella Enteritidis phage type 6a are derived from Salm . Enteritidis phage type 4. J Appl Bacteriol 81:613–618
    [Google Scholar]
  11. Rozen S., Skaletsky H. J. 2000; Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology pp 365–386 Edited by Krawetz S., Misener S. Totowa, NJ: Humana Press;
    [Google Scholar]
  12. Schmieger H. 1999; Molecular survey of the Salmonella phage typing system of Anderson. J Bacteriol 181:1630–1635
    [Google Scholar]
  13. Tanaka K., Nishimori K., Makino S., Nishimori T., Kanno T., Ishihara R., Sameshima T., Akiba M., Nakazawa M. other authors 2004; Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J Clin Microbiol 42:1807–1812 [CrossRef]
    [Google Scholar]
  14. Vander Byl C., Kropinski A. M. 2000; Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol 182:6472–6481 [CrossRef]
    [Google Scholar]
  15. Ward L. R. 2006; Salmonella – the last fifty years. In Proceedings of the International Symposium on Salmonella and Salmonellosis St Malo
    [Google Scholar]
  16. Ward L. R., de Sa J. D., Rowe B. 1987; A phage-typing scheme for Salmonella Enteritidis. Epidemiol Infect 99:291–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000034-0
Loading
/content/journal/jmm/10.1099/jmm.0.000034-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed