1887

Abstract

complex is a significant pathogen in patients with non-cystic fibrosis (non-CF). Nevertheless, there is little description of the genetic diversity of this species. The aims of this study were to investigate the distribution of complex isolated from respiratory specimens by variable number tandem repeat (VNTR) typing. The results of 104 clinical isolates from 104 non-CF patients were compared using PFGE, genotypes and clarithromycin susceptibility. The allelic diversity (Hunter–Gaston Discriminatory Index) of the 17 loci examined by VNTR typing was high (0.977). We determined that C28 sequevar (41) genotypes and clarithromycin-acquired resistance isolates were scattered in the minimum spanning tree. Intriguingly, VNTR typing and PFGE were highly congruent and revealed that there were clear examples of grouping of isolates from different individuals amongst both and , and showed five clusters of distinct identical isolates. Within these clusters, type I formed three different clusters. Although the distribution of type II-1 was low (9.3 %), type II-1 isolates separated from clusters contained type I isolates. Thus, genotypes could be discriminated by analysing VNTRs with sufficient genetic distance for intra-species-level discrimination.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000016
2015-03-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/3/254.html?itemId=/content/journal/jmm/10.1099/jmm.0.000016&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M.. ( 2004;). Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. . Int J Syst Evol Microbiol 54:, 2095–2105. [CrossRef][PubMed]
    [Google Scholar]
  2. Adékambi T., Berger P., Raoult D., Drancourt M.. ( 2006;). rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov.. Int J Syst Evol Microbiol 56:, 133–143. [CrossRef][PubMed]
    [Google Scholar]
  3. Bastian S., Veziris N., Roux A. L., Brossier F., Gaillard J. L., Jarlier V., Cambau E.. ( 2011;). Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. . Antimicrob Agents Chemother 55:, 775–781. [CrossRef][PubMed]
    [Google Scholar]
  4. Brown-Elliott B. A., Wallace R. J. Jr. ( 2002;). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. . Clin Microbiol Rev 15:, 716–746. [CrossRef][PubMed]
    [Google Scholar]
  5. Bryant J. M., Grogono D. M., Greaves D., Foweraker J., Roddick I., Inns T., Reacher M., Haworth C. S., Curran M. D. et al. ( 2013;). Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. . Lancet 381:, 1551–1560. [CrossRef][PubMed]
    [Google Scholar]
  6. Cheng A., Liu Y. C., Chen M. L., Hung C. C., Tsai Y. T., Sheng W. H., Liao C. H., Hsueh P. R., Chen Y. C., Chang S. C.. ( 2013;). Extrapulmonary infections caused by a dominant strain of Mycobacterium massiliense (Mycobacterium abscessus subspecies bolletii). . Clin Microbiol Infect 19:, E473–E482. [CrossRef][PubMed]
    [Google Scholar]
  7. Choi G.-E., Chang C. L., Whang J., Kim H.-J., Kwon O. J., Koh W.-J., Shin S. J.. ( 2011;). Efficient differentiation of Mycobacterium abscessus complex isolates to the species level by a novel PCR-based variable-number tandem-repeat assay. . J Clin Microbiol 49:, 1107–1109. [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI ( 2011;). Susceptibility testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. ; Approved Standard, 2nd edn, M24-A2. Wayne, PA:. Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. Davidson R. M., Hasan N. A., de Moura V. C., Duarte R. S., Jackson M., Strong M.. ( 2013;). Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains. . Infect Genet Evol 20:, 292–297. [CrossRef][PubMed]
    [Google Scholar]
  10. Duarte R. S., Lourenço M. C., Fonseca L. S., Leão S. C., Amorim E. L., Rocha I. L., Coelho F. S., Viana-Niero C., Gomes K. M. et al. ( 2009;). Epidemic of postsurgical infections caused by Mycobacterium massiliense. . J Clin Microbiol 47:, 2149–2155. [CrossRef][PubMed]
    [Google Scholar]
  11. Fisher E. J., Gloster H. M. Jr. ( 2005;). Infection with Mycobacterium abscessus after Mohs micrographic surgery in an immunocompetent patient. . Dermatol Surg 31:, 790–794. [CrossRef][PubMed]
    [Google Scholar]
  12. Harada T., Akiyama Y., Kurashima A., Nagai H., Tsuyuguchi K., Fujii T., Yano S., Shigeto E., Kuraoka T. et al. ( 2012;). Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. . J Clin Microbiol 50:, 3556–3561. [CrossRef][PubMed]
    [Google Scholar]
  13. Harris K. A., Kenna D. T. D.. ( 2014;). Mycobacterium abscessus infection in cystic fibrosis: molecular typing and clinical outcomes. . J Med Microbiol 63:, 1241–1246. [CrossRef][PubMed]
    [Google Scholar]
  14. Harris K. A., Kenna D. T. D., Blauwendraat C., Hartley J. C., Turton J. F., Aurora P., Dixon G. L. J.. ( 2012;). Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. . J Clin Microbiol 50:, 1758–1761. [CrossRef][PubMed]
    [Google Scholar]
  15. Hunter P. R., Gaston M. A.. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. . J Clin Microbiol 26:, 2465–2466.[PubMed]
    [Google Scholar]
  16. Iwamoto T., Nakajima C., Nishiuchi Y., Kato T., Yoshida S., Nakanishi N., Tamaru A., Tamura Y., Suzuki Y., Nasu M.. ( 2012;). Genetic diversity of Mycobacterium avium subsp. hominissuis strains isolated from humans, pigs, and human living environment. . Infect Genet Evol 12:, 846–852. [CrossRef][PubMed]
    [Google Scholar]
  17. Jeon S.-M., Lim N.-R., Kwon S.-J., Shim T.-S., Park M.-S., Kim B.-J., Kim S.-H.. ( 2014;). Analysis of species and intra-species associations between the Mycobacterium abscessus complex strains using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). . J Microbiol Methods 104:, 19–25. [CrossRef][PubMed]
    [Google Scholar]
  18. Jönsson B. E., Gilljam M., Lindblad A., Ridell M., Wold A. E., Welinder-Olsson C.. ( 2007;). Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. . J Clin Microbiol 45:, 1497–1504. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim H.-Y., Kook Y., Yun Y.-J., Park C. G., Lee N. Y., Shim T. S., Kim B.-J., Kook Y.-H.. ( 2008;). Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonaeMycobacterium abscessus group isolates. . J Clin Microbiol 46:, 3384–3390. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim H.-Y., Kim B. J., Kook Y., Yun Y.-J., Shin J. H., Kim B.-J., Kook Y.-H.. ( 2010;). Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. . Microbiol Immunol 54:, 347–353. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim B. J., Yi S. Y., Shim T. S., Do S. Y., Yu H. K., Park Y. G., Kook Y.-H., Kim B. J.. ( 2012;). Discovery of a novel hsp65 genotype within Mycobacterium massiliense associated with the rough colony morphology. . PLoS ONE 7:, e38420. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim B. J., Kim B. R., Hong S. H., Seok S. H., Kook Y. H., Kim B. J.. ( 2013;). Complete genome sequence of Mycobacterium massiliense clinical strain Asan 50594, belonging to the type II genotype. . Genome Announc 1:, e00429-13. [CrossRef][PubMed]
    [Google Scholar]
  23. Leao S. C., Tortoli E., Euzéby J. P., Garcia M. J.. ( 2011;). Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. . Int J Syst Evol Microbiol 61:, 2311–2313. [CrossRef][PubMed]
    [Google Scholar]
  24. Machado G. E., Matsumoto C. K., Chimara E., Duarte R. S., de Freitas D., Palaci M., Hadad D. J., Lima K. V., Lopes M. L. et al. ( 2014;). Multilocus sequence typing scheme versus pulsed-field gel electrophoresis for typing Mycobacterium abscessus isolates. . J Clin Microbiol 52:, 2881–2891. [CrossRef][PubMed]
    [Google Scholar]
  25. Macheras E., Konjek J., Roux A. L., Thiberge J. M., Bastian S., Leão S. C., Palaci M., Sivadon-Tardy V., Gutierrez C. et al. ( 2014;). Multilocus sequence typing scheme for the Mycobacterium abscessus complex. . Res Microbiol 165:, 82–90. [CrossRef][PubMed]
    [Google Scholar]
  26. Monego F., Duarte R. S., Nakatani S. M., Araújo W. N., Riediger I. N., Brockelt S., Souza V., Cataldo J. I., da Silva Dias R. C., Biondo A. W.. ( 2011;). Molecular identification and typing of Mycobacterium massiliense isolated from postsurgical infections in Brazil. . Braz J Infect Dis 15:, 436–441. [CrossRef][PubMed]
    [Google Scholar]
  27. Nunes L. de S., Baethgen L. F., Ribeiro M. O., Cardoso C. M., de Paris F., De David S. M., da Silva M. G., Duarte R. S., Barth A. L.. ( 2014;). Outbreaks due to Mycobacterium abscessus subsp. bolletii in southern Brazil: persistence of a single clone from 2007 to 2011. . J Med Microbiol 63:, 1288–1293. [CrossRef][PubMed]
    [Google Scholar]
  28. Sassi M., Drancourt M.. ( 2014;). Genome analysis reveals three genomospecies in Mycobacterium abscessus. . BMC Genomics 15:, 359–369. [CrossRef][PubMed]
    [Google Scholar]
  29. Tettelin H., Davidson R. M., Agrawal S., Aitken M. L., Shallom S., Hasan N. A., Strong M., Nogueira de Moura V. C., De Groote M. A. et al. ( 2014;). High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. . Emerg Infect Dis 20:, 364–371. [CrossRef][PubMed]
    [Google Scholar]
  30. Thomson R., Tolson C., Sidjabat H., Huygens F., Hargreaves M.. ( 2013;). Mycobacterium abscessus isolated from municipal water – a potential source of human infection. . BMC Infect Dis 13:, 241. [CrossRef][PubMed]
    [Google Scholar]
  31. van Ingen J., de Zwaan R., Dekhuijzen R. P., Boeree M. J., van Soolingen D.. ( 2009;). Clinical relevance of Mycobacterium chelonaeabscessus group isolation in 95 patients. . J Infect 59:, 324–331. [CrossRef][PubMed]
    [Google Scholar]
  32. WHO ( 2004;). The Molecular Genetic Epidemiology of Cystic Fibrosis. Geneva:: World Health Organization;.
    [Google Scholar]
  33. Wong Y. L., Ong C. S., Ngeow Y. F.. ( 2012;). Molecular typing of Mycobacterium abscessus based on tandem-repeat polymorphism. . J Clin Microbiol 50:, 3084–3088. [CrossRef][PubMed]
    [Google Scholar]
  34. Yoshida S., Tsuyuguchi K., Suzuki K., Tomita M., Okada M., Hayashi S., Iwamoto T., Saito H.. ( 2013;). Further isolation of Mycobacterium abscessus subsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. . Int J Antimicrob Agents 42:, 226–231. [CrossRef][PubMed]
    [Google Scholar]
  35. Zelazny A. M., Root J. M., Shea Y. R., Colombo R. E., Shamputa I. C., Stock F., Conlan S., McNulty S., Brown-Elliott B. A. et al. ( 2009;). Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. . J Clin Microbiol 47:, 1985–1995. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000016
Loading
/content/journal/jmm/10.1099/jmm.0.000016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error