Modified 16S–23S rRNA intergenic region restriction endonuclease analysis for species identification of strains isolated from pigs, compared with identification using classical methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Free

Abstract

Fast and reliable identification of bacteria to at least the species level is currently the basis for correct diagnosis and appropriate treatment of infections. This is particularly important in the case of bacteria of the genus , whose resistance profile is often correlated with their species (e.g. resistance to vancomycin). In this study, we evaluated restriction endonuclease analysis of the 16S–23S rRNA gene intergenic transcribed spacer (ITS) region for species identification of . The utility of the method was compared with that of phenotypic methods [biochemical profile evaluation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)]. Identification was based on 21 reference strains, of the species , , , , , , and , and 47 field strains isolated from pigs. Restriction endonuclease analysis of the ITS-PCR product using fI, I and I, in the order specified, enabled species differentiation of the reference and field strains, and in the case of the latter, the results of species identification were identical (47/47) to those obtained by MALDI-TOF MS. Moreover, as a result of digestion with I, a unique restriction profile was also obtained for the strains (3/3) identified by MALDI-TOF MS as In our opinion, restriction endonuclease analysis of the 16S–23S rRNA gene ITS region of may be a simple and relatively fast (less than 4 h) alternative method for identifying the species occurring most frequently in humans and animals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000008
2015-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/3/217.html?itemId=/content/journal/jmm/10.1099/jmm.0.000008&mimeType=html&fmt=ahah

References

  1. Arias C. A., Robredo B., Singh K. V., Torres C., Panesso D., Murray B. E. 2006; Rapid identification of Enterococcus hirae and Enterococcus durans by PCR and detection of a homologue of the E. hirae mur-2 gene in E. durans. J Clin Microbiol 44:1567–1570 [View Article][PubMed]
    [Google Scholar]
  2. Arias C. A., Contreras G. A., Murray B. E. 2010; Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562 [View Article][PubMed]
    [Google Scholar]
  3. Champagne J., Diarra M. S., Rempel H., Topp E., Greer C. W., Harel J., Masson L. 2011; Development of a DNA microarray for enterococcal species, virulence, and antibiotic resistance gene determinations among isolates from poultry. Appl Environ Microbiol 77:2625–2633 [View Article][PubMed]
    [Google Scholar]
  4. Chan T.-S., Wu M.-S., Suk F.-M., Chen C.-N., Chen Y.-F., Hou Y.-H., Lien G.-S. 2012; Enterococcus hirae-related acute pyelonephritis and cholangitis with bacteremia: an unusual infection in humans. Kaohsiung J Med Sci 28:111–114 [View Article][PubMed]
    [Google Scholar]
  5. Devriese L. A., Pot B., Collins M. D. 1993; Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J Appl Bacteriol 75:399–408 [View Article][PubMed]
    [Google Scholar]
  6. Domig K. J., Mayer H. K., Kneifel W. 2003; Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. Int J Food Microbiol 88:165–188 [View Article][PubMed]
    [Google Scholar]
  7. Dutka-Malen S., Evers S., Courvalin P. 1995; Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27[PubMed]
    [Google Scholar]
  8. Harwood V. J., Delahoya N. C., Ulrich R. M., Kramer M. F., Whitlock J. E., Garey J. R., Lim D. V. 2004; Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Lett Appl Microbiol 38:476–482 [View Article][PubMed]
    [Google Scholar]
  9. Hayes J. R., English L. L., Carter P. J., Proescholdt T., Lee K. Y., Wagner D. D., White D. G. 2003; Prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Appl Environ Microbiol 69:7153–7160 [View Article][PubMed]
    [Google Scholar]
  10. Jackson C. R., Fedorka-Cray P. J., Barrett J. B. 2004; Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42:3558–3565 [View Article][PubMed]
    [Google Scholar]
  11. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952[PubMed]
    [Google Scholar]
  12. Jurkovič D., Krizková L., Dusinský R., Belicová A., Sojka M., Krajčovič J., Ebringer L. 2006; Identification and characterization of enterococci from bryndza cheese. Lett Appl Microbiol 42:553–559[PubMed]
    [Google Scholar]
  13. Knijff E., Dellaglio F., Lombardi A., Andrighetto C., Torriani S. 2001; Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes. J Microbiol Methods 47:35–40 [View Article][PubMed]
    [Google Scholar]
  14. Kühn I., Iversen A., Burman L. G., Olsson-Liljequist B., Franklin A., Finn M., Aarestrup F., Seyfarth A.-M., Blanch A. R. et al. 2000; Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment. Example of an ongoing project within the European research programme. Int J Antimicrob Agents 14:337–342 [View Article][PubMed]
    [Google Scholar]
  15. Lavová M., Bezeková J., Čanigová M., Kročko M., Domig K. J. 2014; Species identification of enterococci by biochemical test and molecular-genetic methods. Potravinarstvo 8:124–129 [View Article]
    [Google Scholar]
  16. Lleò M. M., Bonato B., Benedetti D., Canepari P. 2005; Survival of enterococcal species in aquatic environments. FEMS Microbiol Ecol 54:189–196 [View Article][PubMed]
    [Google Scholar]
  17. Moore D. F., Zhowandai M. H., Ferguson D. M., McGee C., Mott J. B., Stewart J. C. 2006; Comparison of 16S rRNA sequencing with conventional and commercial phenotypic techniques for identification of enterococci from the marine environment. J Appl Microbiol 100:1272–1281 [View Article][PubMed]
    [Google Scholar]
  18. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  19. Poyart C., Quesnes G., Trieu-Cuot P. 2000; Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 38:415–418[PubMed]
    [Google Scholar]
  20. Prakash V. P., Rao S. R., Parija S. C. 2005; Emergence of unusual species of enterococci causing infections, South India. BMC Infect Dis 5:14 [View Article][PubMed]
    [Google Scholar]
  21. Reid K. C., Cockerill F. R. III, Patel R. 2001; Clinical and epidemiological features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum bacteremia: a report of 20 cases. Clin Infect Dis 32:1540–1546 [View Article][PubMed]
    [Google Scholar]
  22. Shewmaker P. L., Steigerwalt A. G., Nicholson A. C., Carvalho M. G., Facklam R. R., Whitney A. M., Teixeira L. M. 2011; Reevaluation of the taxonomic status of recently described species of Enterococcus: evidence that E. thailandicus is a senior subjective synonym of “E. sanguinicola” and confirmation of E. caccae as a species distinct from E. silesiacus. J Clin Microbiol 49:2676–2679 [View Article][PubMed]
    [Google Scholar]
  23. Sood S., Malhotra M., Das B. K., Kapil A. 2008; Enterococcal infections & antimicrobial resistance. Indian J Med Res 128:111–121 [View Article][PubMed]
    [Google Scholar]
  24. Tanasupawat S., Sukontasing S., Lee J.-S. 2008; Enterococcus thailandicus sp. nov., isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 58:1630–1634 [View Article][PubMed]
    [Google Scholar]
  25. Teng L.-J., Hsueh P.-R., Wang Y.-H., Lin H.-M., Luh K.-T., Ho S.-W. 2001; Determination of Enterococcus faecalis groESL full-length sequence and application for species identification. J Clin Microbiol 39:3326–3331 [View Article][PubMed]
    [Google Scholar]
  26. Trivedi K., Cupakova S., Karpiskova R. 2011; Virulence factors and antibiotic resistance in enterococci isolated from food-stuffs. Veterinarni Medicina 56:352–357
    [Google Scholar]
  27. Tyrrell G. J., Bethune R. N., Willey B., Low D. E. 1997; Species identification of enterococci via intergenic ribosomal PCR. J Clin Microbiol 35:1054–1060[PubMed]
    [Google Scholar]
  28. US Environmental Protection Agency 1986 Ambient Water Quality Criteria for Bacteria – 1986 Washington, DC: US Environmental Protection Agency;
    [Google Scholar]
  29. Velasco D., Perez S., Peña F., Dominguez M. A., Cartelle M., Molina F., Moure R., Villanueva R., Bou G. 2004; Lack of correlation between phenotypic techniques and PCR-based genotypic methods for identification of Enterococcus spp. Diagn Microbiol Infect Dis 49:151–156 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000008
Loading
/content/journal/jmm/10.1099/jmm.0.000008
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed